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Abstract—Extracting API knowledge from Stack Overflow
has become a crucial way to assist developers in using APIs.
Existing research has primarily focused on extracting relevant
API-related knowledge at the sentence level to enhance API
documentation. However, this approach can lead to a loss
of crucial context, especially when sentences contain context-
dependent entities (i.e., understanding them requires referring
to the surrounding context), which may hinder developers’
understanding. To investigate this issue, we conducted an em-
pirical study of 384 Stack Overflow posts and found that (1)
approximately one-third of API functionality sentences contain
context-dependent entities, and (2) these entities fall into two
categories: Referential Context-Dependent Entities and Local
Variable Context-Dependent Entities. In response, we developed
a novel method, CEDCC, which combines an entity filtering
strategy informed by insights from our empirical study, with a
large language model (LLM) to construct coreference chains for
detecting context-dependent entities. Additionally, it employs a
step-by-step approach with the LLM to complete the necessary
context for understanding these entities. To evaluate CEDCC,
we constructed a dataset of 1,023 API knowledge sentences,
including 574 context-dependent entities and their required
contexts. The results show that CEDCC significantly outperforms
baseline methods in both detecting context-dependent entities
and completing context tasks, achieving an F1-score of 0.86 and
a BERTScore of 0.397. Human evaluations further confirmed
that CEDCC effectively improves the comprehensibility of API
knowledge sentences.

Index Terms—API Knowledge, Context-dependent, LLM

I. INTRODUCTION

In modern software development, Application Programming
Interfaces (APIs) are crucial for software reuse, but their
documentation often lacks practical examples and detailed
explanations [1], [2]. As a result, developers frequently turn to
online communities like Stack Overflow (SO) for real-world
advice and usage examples. Existing research has aimed to
extract relevant API-related knowledge from SO to enhance
API documentation [3], [4]. These knowledge, e.g., API
functionality and constraints, are obtained by identifying posts
mentioning specific APIs and considering their contents as
related knowledge for those APIs [5], [6].

Researchers have employed different levels of granularity in
their extraction methods, e.g., post-level [7] (extracting entire
questions, answers, or comments), and sentence-level [8] (iso-
lating individual sentences that specifically contain API-related
information). Take the SO post in Fig. 1 as an example. In this
post, the API matplotlib.pyplot.subplots adjust is mentioned.
When extracting knowledge at the post level, all sentences

Fig. 1. An example from Stack Overflow illustrating API knowledge
extraction at the post and sentence Levels.

within the post are considered as relevant knowledge to this
API. This results in the extraction of not only sentences that
describe the functionality of the API (highlighted with red
underlines) but also API-unrelated content, such as “So here’s
a rough example of the idea” (highlighted with red dotted
lines). These sentences introduce unnecessary information
and hinder developers’ ability to identify the key details. In
contrast, sentence-level extraction targets only the sentence
marked with red underlines, thereby reducing redundancy
and emphasizing the most important information. Therefore,
sentence-level extraction has become the preferred approach
[9], [10].

Although sentence-level extraction has many advantages,
it also leads to a loss of context. Take another sentence
in Fig. 1 for example: “... plot date to plot your values”
(highlighted with a red box). This sentence describes the
functionality of the matplotlib.pyplot.plot date API by indicat-
ing its use—“plot your values.” However, fully understanding
what “your values” refers to requires additional context (i.e.,
other sentences that were not extracted during the sentence-
level extraction). Therefore, we call “your values” context-
dependent entities, and extracting this sentence alone as
a functional description of matplotlib.pyplot.plot date could
undermine developers’ understanding and reduce its practical-
ity. In contrast, the sentence describing the functionality of
matplotlib.pyplot.subplots adjust marked with red underlines
in Fig. 1 can be understood without additional context, indicat-
ing that it does not contain context-dependent entities. Thus,



detecting context-dependent entities within API knowledge
sentences and providing the necessary context are crucial
for improving the comprehensibility of the extracted API
knowledge.

Motivated by this, we conducted an empirical study of 384
SO posts to explore the characteristics of context-dependent
entities within API knowledge sentences. Our findings re-
vealed that: (1) approximately 1/3 of API knowledge sentences
contain context-dependent entities; (2) there are two types
of context-dependent entities: Referential Context-Dependent
Entities and Local Variable Context-Dependent Entities; and
(3) the context required to assist in understanding these entities
is often distributed both within the post containing the API
sentence and across other posts. These results underscore
the need to detect context-dependent entities and complete
the necessary context, which has inspired the design of our
correspondence detection and completion approach.

Based on these findings, we developed CEDCC (Context-
dependent Entity Detection and Context Completion), an
approach designed to improve the comprehensibility of API
knowledge. This method takes an API knowledge sentence
as input and identifies both the context-dependent entities
within it and the context necessary for understanding them.
Specifically, in the detection stage, we adopt corresponding
filtering strategies to filter candidate entities for each type
of context-dependent entity identified in our empirical study,
leveraging syntactic and code analysis. Next, we utilize a large
language model (LLM) to construct coreference chains (i.e.,
a sequence of phrases in a text that refer to the same entity
[11]) that include the candidate entities. A rule-based analysis
is then performed on these chains to detect context-dependent
entities. In the completion stage, we implement a step-by-step
context completion process using the LLM. The LLM first
extracts context related to the context-dependent entity from
SO posts. Drawing on our empirical analysis of the distribution
of required context, we limit the scope of SO posts to the
SO thread where the entity appears, including the question,
accepted answer, other answers, and their comments. Finally,
the LLM uses the selected relevant context to generate the
necessary context to aid in comprehending the entities.

We further constructed a specific dataset to evaluate the
performance of CEDCC. This dataset consists of 1,023
API knowledge sentences from five popular Python li-
braries—matplotlib, pandas, numpy, scipy, and sklearn—and
contains 574 context-dependent entities along with the cor-
responding contexts required for their understanding. In
the context-dependent entity identification stage, CEDCC
achieved a precision of 0.912, a recall of 0.814, and an F1
score of 0.860. In the context completion stage, CEDCC
achieved ROUGE-1 of 0.375, ROUGE-L of 0.351, and
BERTScore of 0.397. To the best of our knowledge, we
are the first to address this research problem, there is no
existing baseline available for direct comparison. Therefore,
we chose to compare CEDCC with a large language model
(LLM), which has shown excellent performance in natural
language understanding tasks, and ALLenNLP, which is well-

suited for similar tasks, such as coreference resolution. In
both the detection and completion stages, CEDCC significantly
outperformed these two baselines. We also conducted ablation
experiments to investigate the contribution of various design
decisions in CEDCC, and the results demonstrated that all
these decisions positively contribute to CEDCC’s performance.
Additionally, we performed a human evaluation of CEDCC’s
performance, which showed that CEDCC effectively improves
the comprehensibility and utility of API knowledge sentences.

In summary, the contributions of this paper are:
• We conducted an empirical study of 384 SO posts and

identified two types of context-dependent entities in API
knowledge sentences, which hinder developers’ under-
standing of API knowledge within these sentences.

• We developed a novel method, CEDCC, that can detect
context-dependent entities in API knowledge sentences
and complete the necessary context. This method can be
used independently or alongside existing API knowledge
extraction techniques to enhance the comprehensibility of
the extracted API knowledge.

• We constructed a specialized dataset consisting of 1,023
API knowledge sentences and 574 context-dependent
entities, which can be used to evaluate both the detection
of context-dependent entities and the completion of the
context that assists in understanding these entities.

II. EMPIRICAL STUDY

To understand the challenges and potential solution space
for detecting context-dependent entities in API knowledge
sentences within Stack Overflow posts and completing their
required context, we conducted an empirical study to explore
the characteristics of such entities, focusing on answering the
following research questions:

• RQ1: How prevalent are context-dependent entities in
API functionality sentences?

• RQ2: What types of context-dependent entities are in API
functional sentences?

• RQ3: What is the distribution of the context on which
the entity depends?

A. Data Collection

First, we download the official data released by SO as
of December 20231. Then we selected the posts related to
five popular Python libraries (i.e., NumPy, Pandas, Matplotlib,
SciPy, and Scikit-learn) as study objects due to the widespread
use of these libraries in the developer community and their rich
APIs. There are a significant amount of discussions related to
these libraries on SO, providing a rich dataset for studying
context dependency in API sentences. Additionally, focusing
on these libraries allowed us to conduct a thorough analysis
within a manageable scope, ensuring the reliability of our
findings.

To ensure the reliability of the extracted API sentences,
developers generally extract them from the accepted answers

1https://archive.org/details/stackexchange
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in SO [12], [13] (i.e., the answer that the questioner thinks
can solve his/her problem). We followed their practices by
selecting accepted answers as our knowledge source. That is,
we collected all accepted answers from SO that were tagged
with at least one of the five Python libraries mentioned above,
and obtained 290,316 accepted answers.

Second, due to the large volume of answers, conducting
a manual analysis of each answer would be impractical.
Therefore, we employed a sampling method to ensure the
feasibility of the analysis and the representativeness of the
results. Specifically, we randomly sample 384 answers from
these answers with 95% confidence level and 5% confidence
interval [14]. We further preprocessed these answers from
HTML format to clean text using BeautifulSoup2. Consid-
ering that we need to annotate context-dependent entities at
sentence-level, we split these 384 answers into 1,981 sentences
with the NLTK sentence parser [15].

B. RQ1

Approach. To answer RQ1, we employed two master’s
students proficient in Python to manually classify 1,981 sen-
tences from the dataset, determining whether each sentence
describes API functionality. In cases where their classifications
diverged, one of the authors facilitated a discussion with them
to reach a final decision. After extracting the API function
sentences, they need to determine whether these sentences
contain entities that require context outside the sentences to
assist in understanding, and then annotate the entities.

Results. As a result, we identified 373 API functionality
sentences, with a Cohen’s Kappa coefficient [16] of 0.81.
Among these, 112 sentences contained 141 context-dependent
entities, with a Cohen’s Kappa coefficient of 0.84. In other
words, approximately one-third of the sentences describing
API functionality require additional context beyond the sen-
tence itself for full understanding. This finding underscores
the necessity of detecting context-dependent entities and com-
pleting necessary context in API functionality sentences.

C. RQ2

Approach. To answer RQ2, these two masters and one
author proceeded to classify the context-dependent entities
identified in RQ1. The classification of context-dependent
entities was conducted as an iterative process by following
steps similar to the process of Liu et al. [17] and Snow et al.
[18]. Specifically, we first randomly sampled 10 sentences
from a set of 112 sentences identified in RQ1 as contain-
ing context-dependent entities for an exploratory annotation.
Through independent annotations and subsequent discussions
among annotators, we established an initial category termed
“Referential Phrases”, which refers to phrases containing
demonstrative pronouns, such as “this data.” Following this,
we proceeded to annotate the remaining sentences in the
dataset. if an entity was identified as context-dependent but
did not match any of the existing defined types, we modified

2https://pypi.org/project/beautifulsoup4/

the definitions of current context-dependent entity types or
created a new type based on discussions. If any changes
to the context-dependent entity types occurred, all sentences
were re-annotated accordingly. This iterative approach ensured
comprehensive classification.

It is important to note that during the annotation pro-
cess, certain entities were identified as domain-specific terms,
such as “Mersenne-Twister PRNG” in the sentence “Ran-
dom numbers are created by the Mersenne-Twister PRNG in
numpy.random.” Since our focus is on entities that require
additional context beyond the API sentence for understand-
ing, and understanding domain-specific terms depends on the
annotators’ expertise in the respective domains, we chose not
to classify these entities as context-dependent, despite their
potential to hinder users’ comprehension of the API knowledge
sentences.

To further validate the correctness and completeness of our
coding of context-dependent entity types and to minimize bias,
we enlisted two master’s students proficient in Python (who
had not participated in the previous annotation) to annotate a
subset of the above API functionality sentences following our
coding protocol. Specifically, we randomly extracted 20 API
sentences from 373 API functionality sentences and the anno-
tation was conducted independently by the two students. For
each sentence, they annotated the context-dependent entities
based on our definitions. If none of the existing type definitions
were suitable, they labeled the sentence as “New Type.” The
Cohen’s Kappa coefficient [16] for this annotation process was
1. The annotation results in this round were consistent with
our previous annotations, and no new types were reported.

Results. Through the open coding process described above,
we identified two types of context-dependent entities: Refer-
ential Context-Dependent Entities (RCDE) and Local Variable
Context-Dependent Entities (LVCDE). Their definitions are as
follows:

• RCDE: An entity is classified as RCDE if it includes
referencing terms, such as demonstrative pronouns (e.g.,
“this”) or spatial references (e.g., “above”), where the
explanation of the referenced entity requires context
beyond the API sentence itself.

• LVCDE: An entity is classified as LVCDE if it is defined
within a code snippet or data snippet in SO, and its
explanation requires context beyond the API sentence
itself.

Table I presents the examples and the number of occurrences
of the two identified types of context-dependent entities. In
the examples, the context-dependent entities are highlighted
in bold. Among these, RCDE is the most common type of
context-dependent entity.

D. RQ3

Approach. To answer RQ3, we first need to collect the
SO posts to which each context-related entity belongs. This
includes the accepted answer containing the entity, the corre-
sponding question, other answers to the same question, and
their comments. The two masters who were responsible for
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TABLE I
THE DETAILS OF CONTEXT-DEPENDENT ENTITY TYPES

Type Example Count

RCDE you can convert it to a dict using
pandas.DataFrame.to dict method 114

LVCDE use numpy.setdiff1d to find all the
rows of df a that not in the inner join 27

TABLE II
DISTRIBUTION OF CONTEXTS ON WHICH ENTITIES DEPEND

Entity Type Question Accepted Answer Other Answer

RCDE 69 44 1

LVCDE 7 20 0

annotation in RQ1 and RQ2 continued their involvement by
reading the SO posts associated with each context-dependent
entity to identify the specific context required for understand-
ing these entities. For each context-dependent entity, they need
to provide the location in the SO post of the context required
to understand that entity. It should be noted that when the
required context appears in a comment, its location is recorded
as the corresponding question or answer to which the comment
belongs. If the required context appears in multiple locations,
the first occurrence sorted by time is used as the reference
location. In cases where discrepancies arose between the two
annotators, one of the authors coordinated a discussion to
resolve the conflicts.

Results. Table II presents the distribution of the required
contexts for each type of context-dependent entity. We observe
that, regardless of the type of context-dependent entity, the
context required for understanding may be distributed across
various parts of the SO posts (e.g., questions, accepted answer
and other answers) without being constrained by the type
of the entity. This observation suggests that, when designing
methods for completing context, it is crucial to consider all
parts of the SO posts comprehensively.

III. OUR PROPOSED APPROACH

The overall framework of our approach is shown in Fig.
2. Generally, CEDCC consists of three stages (i.e., candidate
entity selection, coreference chain construction, step-by-step
context completion). The first two stages are to detect the
context-dependent entities in the sentence, and the last stage is
to complete the required context for understanding the detected
context-dependent entities.

A. Stage 1: Candidate entity selection

Based on the characteristics of the two context-dependent
entities discovered in Section II, we designed corresponding
screening strategies to select candidate entities.

Extraction of candidate RCDE. For the extraction of can-
didate RCDE, we utilized spaCy, a library that performs well
in natural language process tasks [19]. First, we extracted all
noun phrases from the API sentences using spaCy’s syntactic

parsing features. This is because in API sentences, the context-
dependent entities are generally nouns. Then, we filter the
extracted noun phrases according to a predefined keyword
list, and select a noun phrase as a candidate RCDE if it
contains any of the keywords in the list. This keyword list was
meticulously designed to capture phrases that refer to other
entities. The details of the list is provided in Table III. The
construction of this keyword list is based on the results of
empirical study and linguistics knowledge [20].

TABLE III
CEDCC CANDIDATE ENTITY SELECTION KEYWORD LIST

Type Keywords

Personal Pronouns he, she, it, they, him, her, them
Demonstrative Pronouns this, that, these, those
Possessive Pronouns my, your, his, her, its, our, their, mine, yours,

hers, ours, theirs
Interrogative Pronouns what
Indefinite Pronouns such
Spatial Reference above, below

Extraction of candidate LVCDE. According to our empir-
ical study results, LVCDE are local variables defined in code
snippets or data snippets in SO posts, as shown in Fig. 3 (df
is a local variable defined in the code, and Sell is displayed in
the data). So we should select candidate LVCDE from these
local variables. Considering that code and data snippets are
rich sources of local variable definitions and assignments and
they are often surrounded by < Code > tags in SO, we first
extract the snippets marked by the < Code > tag in the SO
posts where the given API sentence is located.

After extracting them, we further differentiated them and
designed corresponding processing strategies for each type of
snippet to extract local variables. Specifically, first we use
Tree-sitter3, a powerful parsing library capable of handling
complex programming language grammars to parse each line
of the snippet. If a line was successfully parsed, it was
classified as a code snippet. For lines that the Tree-sitter
could not parse, we conducted a heuristic analysis to detect
typical code characteristics. We searched for programming
constructs such as keywords (for, while, return), the
assignment operator (=), and other syntax elements indicative
of code. Lines meeting these criteria were also classified as
code snippets. Finally, lines that did not meet the code criteria
were classified as data snippets.

After distinguishing code snippets from data snippets, we
further process them as follows:

• From the identified code snippets, we extracted code
identifiers, which include variable names and function
names. Given that programming language keywords and
built-in functions do not require context to assist in
understanding, we excluded these from our identifier list
(In this paper, we excluded Python keywords, built-in
functions, and the APIs of the five Python libraries (i.e.,

3https://github.com/tree-sitter/tree-sitter
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Fig. 2. Framework of Our Approach.

df = pd.DataFrame({'A':[9,10]*6})

print(df)

transaction  nr_shares ……

Sell 200       ……

You can construct df as follows: with … negative values for Sell

CODE DATA

Fig. 3. Example of Two Types of Local Variables.

the libraries as research subjects in Section II), including
functions, methods, and classes. These exclusions were
determined based on the official API documentation).
This refinement focuses our analysis on user-defined
identifiers that are more likely to be context-dependent.

• From the identified data snippets, We first separate them
by spaces and newlines to get all the row names, column
names, and values, then filter out pure numbers and dates,
and finally remove duplicates to get the local variables of
the data snippets.

Through the above steps, we obtain the list of local variables
defined in the SO posts where the API sentence is located.
Then we select a noun phrase extracted from the API sentence
as a candidate LVCDE if it appears in the local variables list.

B. Stage 2: Coreference chain construction

After obtaining the candidate context-dependent entities, we
need to further determine whether these candidate entities
are truly context-dependent, that is, whether understanding

the entity requires the help of context outside the sentence.
We can consider this task as a variant of the coreference
resolution. Coreference resolution is the task of identifying
and linking pronouns or noun phrases to their respective
antecedents within a text [21]. In our scenario, we need to link
candidate entities to their all referents within the API sentence.
Based on this step, if the referent of a candidate entity is either
itself or consists solely of other candidate entities, we can
conclude that the entity is context-dependent.

To achieve this, we first need to construct coreference chains
within the API sentence. Coreference chains a sequence of
phrases in a text that refer to the same entity [11]. Some
API libraries provide coreference resolution models, such as
AllenNLP 4, which are used to construct coreference chains in
a given text. However, some context-dependent entities refer
to concrete objects (e.g., “it” in the example of the bottom of
Fig. 4), while others refer to an abstract process, e.g., “this” in
the example of the top of Fig. 4, which lack a concrete object.
This presents a challenge for existing coreference resolution
models, which often struggle to handle the latter references
[22], [23]. While LLM’s strong information extraction capa-
bility enables effective processing of abstract references [24],
[25], making it an ideal choice for constructing coreference
chains.

To reduce the complexity of inferring coreference chains
and allow LLMs to focus on constructing coreference chains
involving candidate entities, we designed the prompt shown in

4https://github.com/allenai/allennlp
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Case 1: To convert between pixels and points ( a point is 1 / 72 inches ) , you 

may be able to play around with matplotlib.transforms.ScaledTransform and 

fig.dpi_scale_trans ( the tutorial has something on this , I think ) .

Case 2: Take a look at pandas,    it has a has a DataFrame object.

Fig. 4. The example for two types of reference.

Figure 5. Specifically, we marked context-dependent candidate
entities in the sentence using special symbols, facilitating their
identification by the LLM in subsequent analyses. We then
instructed the LLM to generate coreference chains only for
these marked entities, rather than inferring coreference for all
entities within the API knowledge sentence.

Input:

A sentence where some entities are marked with special tags 

("</BEGIN>" and "<END/>"), while others are unmarked. 

Task: 

Construct coreference chains for the entities of this sentence, 

based solely on the context provided within the sentence.

Output Requirements:

Output the chains in JSON format, where each key represents 

a distinct coreference chain containing the related entities

Example:

[Example Body]

Instruction

Prompt

Input:

The teacher said that </BEGIN>he<END/> would handle 

</BEGIN>it<END/> .

Output:

{

"Chain1": ["The teacher","</BEGIN>he<END/>"],

"Chain2": ["</BEGIN>it<END/>"],

}

Example

Body

Fig. 5. The prompt for constructing coreference chain.

After generating the coreference chains, we analyze each
chain by traversing through it. Specifically, if all entities in
a coreference chain are candidate entities, we can conclude
that understanding them requires context beyond the sentence,
classifying them as context-dependent entities (e.g., “it” in
Chain2 in Fig. 5). Conversely, if the coreference chain includes
non-candidate entities, the candidate entities in that chain are
not considered context-dependent (such as “he” in Chain1 in
Fig. 5).

C. Stage 3: Step-by-step context completion

In this stage, we adopt a step-by-step strategy to instruct
LLM to complete the required context for understanding
context-dependent entities. This is motivated by that compared
to directly utilizing LLM to perform inference tasks, breaking
the tasks into multi-sub-tasks can guide the model step-
by-step, ensuring a thorough understanding of the context
while reducing ambiguity in understanding complex semantic
relationships and improving inference quality [24], [26], [27].

As shown in the third stage of Fig. 2, the context completion
task is divided into two subtasks. For the first subtask, we input

the API sentences, the detected context-dependent entities, and
the candidate context needed to assist in understanding these
entities into the LLM. (the candidate context is defined as the
SO thread to which the API sentence belongs that includes the
question, all answers, and comments, a scope determined by
the findings of RQ3). The LLM is then instructed to extract
from this candidate context the parts relevant to the detected
context-dependent entities (e.g., the sections highlighted by red
boxes in Fig. 6). For the second subtask, the outputs from the
first subtask, along with the API sentences and the identified
context-dependent entities, are fed into the LLM. The LLM
is tasked with generating the necessary context that facilitates
better comprehension of the context-dependent entities (e.g.,
the natural language explanation of “your features” shown in
Fig. 6).

Question: ……

In my Test CSV we have :

……

I am trying to do the TF-IDF on the website text, then add the 

two other relevant columns and fit the Logistic Regression.

Accepted Answer: … 

StandardScaler transforms all of your features

………

Here is how you can scale the X matrix.

URL WebsiteText AlexaRank GooglePageRank Label

“your features” refers to the dataset columns plan to use in a 

logistic regression model, specifically the AlexaRank, 

GooglePageRank, and the TF-IDF transformed WebsiteText.

Other Answers: ……

Context-dependent entity

Candidate 

Context

Related context output 

from the first subtask

Completed context output 

from the second subtask

Fig. 6. An example: completing the context required for understanding entity
“your features”.

IV. EXPERIMENT SETTINGS

In the experiment, we want to answer the following three
research questions (RQs):

• RQ4. How well does our approach perform in detecting
context-dependent entities and completing the required
context?

• RQ5. What is the contribution of different components to
the performance of our approach?

• RQ6. Can our approach improve developers’ understand-
ing of API sentences?

In RQ4 and RQ5, we evaluate the overall performance and the
contribution of each component. In RQ6, we verify whether
the API sentences processed by our approach can improve
developers’ understanding of API sentences.

A. Datasets

We expanded the dataset constructed in the empirical study
by conducting additional sampling. Specifically, we randomly
sampled 616 additional accepted answers from the 290,316
responses obtained in the empirical study, combining them
with the 384 answers previously analyzed. This increased the
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total number of answers in the dataset to 1,000, ensuring a
99% confidence level with a 5% confidence interval. Following
the annotation methodology from the empirical study, we
identified API functionality sentences and annotated context-
dependent entities, yielding Cohen’s Kappa coefficients of 0.87
and 0.84, respectively.

Subsequently, we collected each question corresponding
to the accepted answers, along with other answers to these
questions and their comments. Specifically, we gathered 1,000
questions, 1000 accepted answers, 966 other answers, and
4,703 comments. We analyzed these SO posts to identify
and complete the necessary context for understanding the
context-dependent entities, employing an iterative process of
independent annotation followed by discussions to resolve
discrepancies. The details of final dataset are presented in
Table IV.

TABLE IV
THE STATISTICS OF DATASET

Sentences Tokens Context-Dependent Entities

RCDE LVCDE

1023 16746 498 76

It is important to note that the detection task is evaluated
at the entity level, meaning the number of test samples
corresponds to the total number of entities, not just the context-
dependent ones. This results in approximately 16,000 entities
for evaluation. Based on the principle that a sample size of
around 384 is sufficient to achieve a 95% confidence level
with a 5% confidence interval as the total sample size increases
[14], evaluating 574 context-dependent entities for the context
completion task provides an effective reflection of CEDCC’s
performance on a larger-scale test set.

B. Performance Measures

In our study, we aim to show the competitiveness of CEDCC
via both automatic evaluation and human evaluation.

Automatic Evaluation. The detection of context-dependent
entities can be considered a named entity recognition (NER)
task. Therefore, we adopt commonly used evaluation met-
rics in NER tasks, including precision, recall, and F1 score
[28]. Precision measures the proportion of predicted context-
dependent entities that are correctly identified, while recall
measures the proportion of true context-dependent entities that
are correctly recognized. The F1 score is the harmonic mean
of precision and recall, providing a balanced evaluation of the
detection performance.

Given that the expressions of context necessary for under-
standing the entities can vary, the context completion task can
be framed as a generative task. Accordingly, we employ two
commonly used evaluation metrics for this task: ROUGE [29]
and BERTScore [30]. Specifically, we use ROUGE-1, which
measures unigram overlap, and ROUGE-L, which captures
the longest common subsequence between the generated and

reference texts. These metrics assess the quality of the gen-
erated context completions in terms of both lexical similarity
and sequence structure. Additionally, we use BERTScore to
provide a semantic-level evaluation by comparing the con-
textual embeddings of the generated and reference context
completions, thereby evaluating how well the meaning is
preserved.

Human Evaluation. Our human evaluation primarily fol-
lows the methodology of Lin et al. [31]. Specifically, we
employed six Ph.D. students, none of whom are co-authors of
this paper. Each participant has over five years of programming
experience and is familiar with Python API libraries. To
avoid bias, where participants may have prior assumptions
about the method used to generate API sentences that could
influence their evaluation, the processing method used for each
API sentence was anonymized in the questionnaire, and each
participant completed the questionnaire independently. Before
conducting the evaluation, we provided detailed guidelines
on detecting context-dependent entities and completing their
required contexts. Each participant was asked to score each
API sentence on the following four aspects:

• Accuracy, which reflects how correctly the completed
context explains the context-dependent entities.

• Independence, which measures the extent to which the
processed API sentences can be understood without re-
quiring additional context.

• Comprehensibility, which evaluates the usefulness of the
processed API sentences in aiding software development.

• Practicality, which evaluates the usefulness of the pro-
cessed API sentences in aiding software development.

All scores are given on a scale from 1 to 5 (1 for poor, 2 for
marginal, 3 for acceptable, 4 for good, and 5 for excellent).

C. Baselines

In conducting the evaluation, we faced the challenge of
selecting an appropriate baseline, as this study is the first
to address the detection of context-dependent entities and
the completion of their context in API sentences. To reason-
ably evaluate CEDCC, we selected two baseline methods for
comparison. First, we chose the coreference resolution model
provided by the AllenNLP library (hereafter referred to as
AllenNLP-baseline) as a baseline. Although this model
is not specifically designed for our task, coreference resolu-
tion shares a similar objective. Additionally, we developed a
simplified version of CEDCC as another baseline. Specifically,
we utilized LLM to directly detect context-dependent entities
within a given sentence and complete the required context
(hereafter referred to as LLM-baseline).

D. Implementation Details

All experiments were conducted on a computer equipped
with an Intel(R) Core(TM) i9-10900X CPU and a GeForce
RTX 4090 GPU with 24 GB of memory, running Ubuntu
20.04 as the operating system. The version of the large
language model (LLM) used is gpt-4-0613, with a temperature
setting of 0.5. For SpaCy, we used version 3.7.3, with the
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en core web sm model as the NLP parser. For the code parser
Tree-sitter, we used version 0.23.2. For the baselines, we
used AllenNLP version 2.10.0, with the coreference resolution
model coref-spanbert-large-2021.03.10.

V. RESULTS ANALYSIS

A. RQ4

The comparison results between CEDCC and the baselines
are presented in Table V. Notably, we divided the evaluation
of context completion into two scopes: (1) the evaluation of
the completion for all context-dependent entities, referred to
as Scope 1, where an empty string was used as the completion
result if a context-dependent entity was not correctly identified;
and (2) the evaluation of the completion for only those context-
dependent entities that were correctly identified, referred to as
Scope 2. The best value in each column is highlighted in bold.

In the phase of detecting context-dependent entities, CEDCC
demonstrated superior performance across precision, recall,
and F1 score, achieving values of 0.912, 0.814, and 0.860,
respectively. These results indicate that the CEDCC approach
not only accurately identifies entities (high precision) but also
comprehensively captures them (high recall). In contrast, the
LLM-baseline showed a low precision of 0.164, resulting
in a correspondingly low F1 score. This suggests that effec-
tive identification of context-dependent entities requires more
sophisticated rules or analytical processes, such as construct-
ing coreference chains, rather than solely relying on model
predictions.

The AllenNLP-baseline achieved a recall of 0.843,
demonstrating its ability to identify a greater number of
context-dependent entities. However, its precision was only
0.167, reflecting a high false positive rate and leading to an F1
score of just 0.278. This issue may be attributed to the absence
of candidate phrase selection and its limited capacity to handle
abstract references. For example, in Case 1 (shown in Fig. 4),
the entity “this” refers to the action “To convert between pix-
els ...” rather than a specific entity. AllenNLP-baseline
failed to recognize this abstract reference relationship and
incorrectly classified “this” as a context-dependent entity.

In both evaluation scopes of the context completion
task, CEDCC significantly outperformed the two baseline
methods in both semantic-based (BERTScore) and lexical-
based (ROUGE) evaluations. While the performance of the
LLM-baseline improved in Scope 2, it still fell short of
CEDCC. Since both methods utilized LLM for context com-
pletion, this suggests that a step-by-step approach to context
completion improves both lexical and semantic performance
compared to a direct approach. The AllenNLP-baseline
performed poorly in both scopes, likely due to its relatively
weaker ability to handle long texts and abstract references
compared to LLM.

Results for RQ4: CEDCC significantly outperformed
both baselines in detecting context-dependent entities and
completing context via automatic evaluation.

B. RQ5

Approach. In this RQ, we investigate the contribution of
different components of CEDCC to its overall performance
through an ablation study. Specifically, we design several
variants of CEDCC by altering each component individually
while keeping the others unchanged, as follows:

• Regex-based Entity Selection (RES): Uses regular ex-
pressions to extract candidate entities by selecting noun
phrases that include pronouns or exhibit morphological
characteristics typical of code naming conventions (e.g.,
CamelCase).

• Without Coreference Chain (WCC): Directly prompts
the LLM to determine whether the candidate entity
is context-dependent, without constructing or analyzing
coreference chains.

• Targetless Coreference Chain (TCC): Constructs coref-
erence chains without specifying target entities, then
filters for chains that contain the target entities after
construction.

• Direct Context Completion (DCC): Prompts the model
to complete the context directly, rather than following a
step-by-step strategy.

Results. Table VI presents the performance of CEDCC and
its variants. It is clear that CEDCC achieves the best perfor-
mance across all metrics, validating the contribution of each
design component to the overall system’s effectiveness. In the
context-dependent entity detection stage, the low performance
of RES suggests that entities identified through syntactic and
code analysis are more accurate than those obtained via regular
expression matching. This, in turn, impacts the quality of
coreference chains constructed by the LLM. The discrepancy
likely stems from the fact that regular expressions capture only
morphological features of entities (e.g., CamelCase), without
accounting for contextual relationships such as grammatical
dependencies.

When comparing methods that use the same candidate entity
selection process but differ in their approach to determining
whether an entity is context-dependent, WCC shows the
worst performance. This may be because identifying context
dependence requires explicit rules, such as coreference chain
construction and analysis, rather than relying solely on model
predictions. TCC also underperforms compared to CEDCC,
likely due to CEDCC’s pre-selection of candidate entities,
which enables the LLM to focus on specific entities during
coreference chain construction. By clearly defining target
entities, CEDCC reduces interference from unrelated entities,
resulting in higher-quality coreference chains.

Regarding different strategies for completing context,
CEDCC’s step-by-step approach, which first narrows the con-
text the LLM needs to analyze, allows the model to focus more
effectively on completing the essential contextual details in
the second step. In contrast, DCC’s direct context completion
approach requires the LLM to handle a broader scope of
information, increasing the likelihood of being distracted by
irrelevant details, thereby reducing the overall quality and
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TABLE V
OUR METHOD VS BASELINE

Method Predict Complete in Scope 1 Complete in Scope 2

P R F1 ROUGE-1 ROUGE-L BERTScore ROUGE-1 ROUGE-L BERTScore

CEDCC 0.912 0.814 0.860 0.375 0.351 0.397 0.404 0.378 0.428

LLM-baseline 0.164 0.564 0.254 0.159 0.149 0.149 0.307 0.288 0.287

AllenNLP-baseline 0.167 0.843 0.278 0.076 0.076 0.053 0.200 0.198 0.139

TABLE VI
ABLATION STUDY

Method Predict Complete in Scenatio 1 Complete in Scenatio 2

P R F1 ROUGE-1 ROUGE-L BERTScore ROUGE-1 ROUGE-L BERTScore

CEDCC 0.912 0.814 0.860 0.375 0.351 0.397 0.404 0.378 0.428

RES 0.438 0.650 0.523 0.210 0.189 0.207 0.327 0.294 0.322
WCC 0.491 0.193 0.277 0.054 0.048 0.059 0.272 0.239 0.295
TCC 0.890 0.807 0.846 0.238 0.207 0.238 0.290 0.252 0.289
DCC 0.912 0.814 0.860 0.274 0.257 0.266 0.330 0.310 0.321

performance of the completion process. This step-by-step
strategy is a key factor contributing to CEDCC’s superior
performance over DCC.

Results for RQ5: Each component of CEDCC plays a
crucial role in its overall performance.

C. RQ6

Approach. Following the sample sizes used in similar
generation tasks involving manual evaluation [32], we ran-
domly selected 50 API sentences containing context-dependent
entities from the dataset. These sentences were processed us-
ing Allennlp-baseline, LLM-baseline, and CEDCC,
along with the original API sentences, to form the question-
naire. Since the original API sentences lack completed context
for the context-dependent entities, Accuracy was not evaluated
for them. Each participant was required to evaluate 150
sentences for the Accuracy dimension and 200 API sentences
for each of the other three dimensions. After collecting their
scores, we used Fleiss’ Kappa [33] to measure inter-rater
agreement. The Kappa values for Independence, Practicality,
Comprehensibility, and Accuracy were 0.746, 0.782, 0.764,
and 0.8, respectively, indicating substantial agreement among
participants.

Results. The results are presented in Table VII. CEDCC out-
performs the baseline methods across all dimensions, demon-
strating its effectiveness in identifying context-dependent en-
tities in API sentences and providing the necessary contextual
information to enhance understanding. This leads to signifi-
cant improvements in the comprehensibility and practicality
of API sentences. In terms of Independence and Accuracy,
LLM-baseline performs relatively well, though slightly
below CEDCC, while AllenNLP-baseline performs the
worst. This observation aligns with our conclusions from RQ1,

which evaluated the detection and completion phases using
automated metrics. The original sentences received the lowest
scores for Independence (2.0), which is consistent with the
fact that the selected API sentences inherently contain context-
dependent entities.

Furthermore, we observe a general trend that methods
scoring highly in Independence and Accuracy also tend to
score well in Practicality and Comprehensibility. This suggests
that improvements in Independence and Accuracy positively
impact Practicality and Comprehensibility. These findings val-
idate the motivation behind our research, which is to enhance
developers’ understanding and application of API knowledge
by identifying context-dependent entities in API sentences and
completing the necessary context.

Case Analysis. Fig. 7 presents an example5 of iden-
tifying and completing context-dependent entities in API
sentences using CEDCC compared to LLM-baseline and
AllenNLP-baseline. CEDCC produces results closely
aligned with the ground truth in both vocabulary and seman-
tics, achieving high scores for Independence and Accuracy
(5 and 4.6, respectively). It accurately describes the data
type of page id as a column in a DataFrame (i.e., a Series)
and provides additional explanation of the pandas.factorize
API. This clarity contributes to higher scores in Practicality
and Comprehensibility (4 and 4, respectively). It is worth
noting that one participant gave a Practicality score of 2 (i.e.,
marginal) because this was the development knowledge he had
already mastered.

In contrast, AllenNLP-baseline correctly identifies
page id as a context-dependent entity but fails to provide
a meaningful completion, leading to low scores for Accu-
racy and Practicality (1.3 and 1.8, respectively). This oc-

5https://stackoverflow.com/questions/15829494
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TABLE VII
THE RESULTS OF OUR HUMAN EVALUATION.

Method Independence Practicality ComprehensibilityAccuracy

Original Sentence 2.0 2.4 2.6 -
LLM-baseline 3.5 4.0 3.8 4.0
AllenNlp-baseline 2.4 3.0 3.3 1.4

CEDCC 4.0 4.4 4.1 4.6

curs because page_id’s reference needs to be extracted
from the data snippet within the context, a task that
AllenNLP-baseline’s coreference resolution model is
unable to perform, resulting in an empty completion.

The LLM-baseline incorrectly identifies array as a
context-dependent entity, even though understanding array
requires Python development knowledge rather than context
within the SO post. Additionally, LLM-baseline fails to
provide a clear specification of the data structure for page id.
We speculate that this is due to its direct context completion
strategy. In contrast, CEDCC provides this detail through a
step-by-step completion process. First, CEDCC locates the
relevant context, specifically identifying the data snippet that
defines the local variable page id. In the second step, this
relevant context is highlighted in the prompt provided to
the LLM. This step-by-step process effectively narrows the
model’s search space, allowing it to focus more precisely on
relevant information. In comparison, LLM-baseline lacks
this step, resulting in unclear descriptions of the data structure
and consequently lower scores in Accuracy and Practicality
compared to CEDCC (4.2 and 3.5, respectively).

Original API sentence:

……Here I use pandas.factorize() to convert the page_id to an array ……

Ground truth:

l page_id: a column in the DataFrame, representing the unique identifier of a page.

Related Context:

page_id score

2430 7.632  

……         ……

I have a pandas DataFrame …… which is structured like so:

Allennlp-baseline:

l page_id: 

LLM-baseline:

l array: a data structure that stores a collection of items

l page_id : an identifier for a specific page within the document

CEDCC:

l page_id: a column in the DataFrame that serves as a unique identifier for each 

page, used to track individual pages across different scores.

Fig. 7. An Example of Detecting Context-dependent Entities and Completing
Required Context in API Knowledge Sentence.

Results for RQ6: Through manual evaluation, it was
found that CEDCC enhances the comprehensibility of API
sentences.

VI. RELATED WORK

A. API Knowledge Extraction from SO

API documentation is crucial in software development, but
its complexity and diversity often lead to hard-to-understand
content. To tackle this, extensive research has focused on
extracting various types of API knowledge from community
platforms like SO to assist in understanding [17], [34]. Treude
et al. [1] use a machine learning-based method to extract
insightful sentences from SO to augment API documentation.
Nam et al. [8] introduce SOREL, a machine learning tool
that extracts comparative knowledge of APIs scattered in
posts, improving developers’ understanding by highlighting
differences between comparable APIs. Ren et al. [5] used
SO to supplement the constraints knowledge of APIs. They
developed a text mining approach that extracts API misuse
scenarios from SO to create demystification reports. As for
API functionality knowledge, Shen et al. [35] perform syntac-
tic analysis on SO posts to obtain verb-object phrases, thereby
obtaining descriptions for API functionality.

While these extraction methods effectively retrieve relevant
API knowledge, they can unintentionally lose context from the
original Stack Overflow posts, making certain entities harder
to understand and reducing the usefulness of the extracted
knowledge. Our study addresses this issue by detecting and
completing the missing context.

B. LLM for software engineering

LLMs, due to their powerful natural language and program-
ming capabilities, have been widely applied across various
aspects of software engineering [36]–[39]. Several researchers
have focused on leveraging LLMs for code-related tasks. For
example, Chen et al. introduced ChatUniTest [40], an LLM-
based framework for automated unit test generation through an
adaptive focal context mechanism and a generation-validation-
repair process. Kang et al. [41] presented AutoFL, an LLM-
based fault localization technique that enhances method-level
accuracy by up to 233.3% on real-world Java and Python
bugs, providing both fault locations and natural language
explanations. InferFix [42], an LLM-powered program repair
tool, uses a 12-billion-parameter Codex Cushman model fine-
tuned on bug-fix data to generate precise fixes for critical
security and performance issues, which enhances the LLM’s
ability to repair bugs.

Other researchers are exploring how LLMs’ superior NLP
capabilities can improve software-related documentation. Li
et al. propose FSATD [43], a fusion approach that combines
ChatGPT with smaller models for Self-Admitted Technical
Debts detection so as to provide reliable explanations. Arora
et al. [44] investigate how LLMs can improve requirements
engineering by enhancing the efficiency and accuracy of tasks
like elicitation and analysis of software requirements.

We focus on the application of LLM in assisting in API
knowledge extraction. We do not use LLM to complete the
tasks in one step, but decompose the tasks and then design
targeted prompts in each subtask to use the LLM step by step.
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VII. THREATS TO VALIDITY

Internal Threats. The first threat to internal validity is
related to the subjective judgment of the annotators during
data annotation. To alleviate this threat, we follow commonly
used data analysis principles, e.g., multiple annotators, con-
flict resolution, and reporting agreement coefficients, where
appropriate. Another threat pertains to the performance and
potential failures of our baseline implementations. To mitigate
this threat, we employed models with outstanding performance
in their respective domains that were readily available for
use. Specifically, we utilized the coreference resolution model
coref-spanbert-large-2021.03.10 from the AllenNLP library
and LLM gpt-4-0613.

External Threats. The threat to external validity concerns
the generalizability of our results and findings. To alleviate
this threat, The number of test samples in our detection phase
was approximately 16,000, while for the completion phase,
the number of test samples was determined to maintain a 95%
confidence level with a 5% confidence interval. In the future,
we will build larger datasets covering more programming
languages for further evaluation.

Construct Threats. The threat to construct validity comes
from human studies, which may introduce bias. To ensure that
all students can correctly understand our questionnaire, we
provided a tutorial before our human study.

VIII. CONCLUSION

In this paper, we proposed CEDCC, a novel method to
address the challenge of extracting API knowledge from
Stack Overflow while preserving crucial context. Existing
approaches that extract API-related knowledge at the sentence
level often lose essential contextual information, which limits
comprehension. Through an empirical study, we identified two
types of context-dependent entities—referential phrases and
local variables, and designed CEDCC to automatically iden-
tify and complete their required context. CEDCC significantly
outperformed baseline methods in both context-dependent
entity identification and context completion, achieving high
precision, recall, and comprehensibility scores. Human eval-
uations confirmed CEDCC’s effectiveness in improving API
knowledge utility. Our work contributes to enhancing API
documentation by preserving context, thus aiding developers
in better understanding and utilizing APIs.
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