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Abstract—Code summaries are human-readable text that de-
scribes the functionality of code blocks. Software developers use
code summaries to understand the specification of API while
code retrieve system relies on code summaries for effective code
search. However, code summaries are often written by software
developers. Writing good code summaries usually requires great
effort. It could be helpful if developers use automatic code
summarization system to generate code summaries. Recently,
some works have applied deep learning methods to generate
code summaries for code snippets. However, those deep learning
methods treat code snippets as streams of text tokens while
ignoring the inherent code structure information. In this paper,
we propose a novel code summarization method named the CDE-
Model (Code summarization by Deep learning and Empirical
knowledge) that combines inherent code structure information
with deep learning models. The CDE-Model proposes several
empirical strategies to transform code snippets to refined code
representation and feeds them into an encoder-decoder neural
network for text generation. We conduct large-scale experiments
on 1500 popular Java projects on GitHub' with 396,184 pairs
of code snippets and summaries. Experimental results show that
the quality of code summaries generated by our CDE-Model is
better than other two methods. To the best of our knowledge,
this paper is the first to combine code structure information with
deep learning.

Keywords:Code summarization; GitHub; Recurrent neural
network; Java language.

I. INTRODUCTION

The rapid development of open source software (OSS)
provides a massive reusable resource for software development
[1] [2] [3] [4]. In OSS, code summaries are very important as
they describe the functionality of code blocks in the form of
human-readable text [5]. On one hand, software developers use
code summaries to understand the specification of APIL. On the
other hand, code retrieve system relies on code summaries for
effective natural language code search [6]. Thus, it is crucial
to maintain high-quality and adequate code summaries in OSS
projects. However, code summaries are often manually written
by software developers and writing good code summaries
usually requires great human effort. In our pilot study, we
found that the annotation rate for even famous projects on
GitHub are very low (see Tablel). This could significantly
hinder software innovation. It could be helpful if developers
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use automatic code summarization system to generate code
summaries.

TABLE I: Annotation rate of several famous GitHub projects

Project name | Lines of codes | Code annotation rate

Redis 83,233 23.7%
cocos2d-x 461,685 8.3%
Hadoop 1,217,655 13.1%
blueprints 33,356 8.6%
Tensorflow 300,864 9.2%
hebel 10,040 8.1%
jQuery 42,300 12.0%

To address this problem, automatic code summarization
systems have been proposed for generating code summaries.
Previous code summarization methods usually rely on in-
formation retrieval and text mining methods. For example,
Vassallo C et al. [7] propose the CODES method which ex-
tracts candidate summaries from StackOverflow? discussions
and creates Javadoc descriptions based on social connection
theory. Wang et al. [8] introduce an approach to analyze
constructs of code snippets and extract keywords to produce
code summaries.

Recently, deep learning methods have become a popular
research topic in code summarization research. Iyer et al. [1]
use long short-term memory (LSTM) network to generate code
summaries according to code context. The model they trained
is especially useful for short code snippets. Although the deep
learning based methods have shown effectiveness in code sum-
marization, they usually treat code snippets as stream of text
tokens while ignoring the inherent code structure information.
Explicitly utilizing code structure information, such as loop,
condition and equation expression, into deep learning models
may improve the performance of code summarization.

In this paper, we propose a novel code summarization
approach named the CDE-Model to automatically generate
code summaries. Different from the previous methods, our
approach first utilizes code syntax specification to embed
explicit code structure information into raw source code. Then,
we feed the transformed code snippets into an encoder-decoder
neural network for summary generation. The key contributions
of our study are as follows:
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e A new code summarization framework that combines
deep learning and code structure information.

o A large-scale dataset of Java code summarization task,
which contains 396,184 pairs of source code and text
summaries.

o A high-performance neural network model that leads to
a significant improvement of BLEU readability score.

The rest of this paper is organized as follows. Section II
reviews previous works. Section III describes our methods.
Section IV shows the experimental result and the last section
concludes this paper.

II. RELATED WORK

Many works have been proposed for code summarization.
These works can be divided into three categories including
information retrieval methods, text mining methods and deep
learning methods.

A. Information retrieval

Wong et al. [9] propose an approach which uses information
retrieval methods to associate comments in the Q&A commu-
nity with code snippets. Vassallo et al. [7] propose to use social
connection theory to connect code snippets and comments in
the StackOverflow. Bahihi et al. [10] presente a method named
CrowdSummarizer which exploits crowdsourcing, gamifica-
tion and natural-language processing to automatically generate
high-level summaries of Java program methods. Moreno et
al. [11] present a technique to automatically generate human
readable summaries for Java classes with heuristics rules.

B. Text mining

Wang et al. [8] present an approach to automatically gener-
ate natural language descriptions of Java methods. They identi-
fy the statements in the code snippets and extract the keywords
to generate sentences as code summaries. McBurney et al. [12]
propose a source code summarization technique that generate
English descriptions of Java methods by analyzing how those
methods are invoked. Hill et al. [13] propose an approach that
automatically extracts natural language phrases from source
code and categorize the phrases in a hierarchy. These methods
could generate the logic description for the code snippets.
However, they could not generate code summaries in a high-
level abstraction.

C. Deep learning

Iyer et al. [1] present a deep learning model to generate
code summaries automatically. They use the LSTM network,
a recurrent neural network (RNN), to encode code snippets
into a fixed vector and decode vector into code summaries.
The model has a good performance on short code snippets
and could generate the new words that are not appeared in
the code snippets. Paulus R et al. [14] introduce a neural
network model with intra-attention, and propose to combine
supervised word prediction and reinforcement learning to
generate summaries. The result shows that summaries created
by reinforcement learning model are more readable. Loyola et

al. [15] propose a model to automatically describe changes
introduced in the source code of a program with encoder-
decoder architecture. The result showed that it can generate
feasible and semantically sound descriptions.

III. OVERVIEW OF CDE-MODEL

In this section, we describe the framework of our approach.
Similar to the works of Iyer et al. [1] and Paulus R et al. [14],
we also model the code summarization problem as a sequence-
to-sequence learning task which maps a sequence of code
tokens into a sequence of natural language tokens. Different to
their approaches, we consider the inherent syntactic structure
information in the code tokens. We propose to analyze code
syntax and weave the syntactic structure information into deep
learning networks.
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Fig. 1: Framework of the CDE-Model

Figure 1 shows the framework of our approach which con-
sists of four steps for code summarization task. Specifically,
given a code snippet, we first conduct syntactic structure
analysis to generate the abstract syntax tree (AST) which is
very useful for code analysis and mining. Second, for code
summarization task, what we want is concise human-readable
description rather than programming logic description. Thus,
not all of the AST nodes can be useful. We propose several
heuristic strategies to prune the AST to simplify the code
snippet. Third, based on the pruned AST, we generate an
intermediate code which is simpler than raw code snippets
while preserving the code structure information. Finally, we
feed the intermediate code into a sequence-learning neural
network model to generate text summary.

The key step in our approach is to prune the AST tree.
Programming languages have control statements such as loop
and condition to determine the execution trace of software. In
this paper, we mainly discuss the pruning strategies that deal
with the loop nodes in the AST (see figure 2). Because loop
is one of the most common control statements in the code
snippets [16].
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Fig. 2: The key steps in pruning loop nodes

A. Pruning loop node

After we generate the AST from a code snippet, we propose
to traverse the AST to find loop nodes. If we find loop nodes
such as for and while, we will continue to recursively traverse
its child nodes with three different strategies discussed below.

1) If encountering a method call in the loop subtree: 1f
we find a method call in the subtree, we will replace the
entire loop subtree with a statement of method call. We present
an example in figure 3. We can see that buf.append(b) is an
object method call inside the loop body. Thus, we use text
“buf append” to replace the loop node.

public String toString() {
StringBuilder buf = new StringBuilder(length * 2);
for (int i = 0; i < length; i++) {
int b = data[i];

buf.append(b);

return buf.toString();
¥

Fig. 3: An example of code snippets

One may say that doing so could remove lots of useful
information in the loop subtree. However, we believe that in
Java programming language good class method name usually
reveals the semantic meaning. In addition, if there are more
than one method call, we will choose the last method call
in the loop body to replace the entire loop subtree. Because
several empirical study show that the later the statement, the
more likely it representing the true meaning [14].

2) If encountering special nodes in the loop subtree: If
there are no method calls in the loop subtree, we traverse
the loop subtree from the last child nodes to the first to
find three different type of special nodes including operation
nodes, assignment nodes and control nodes. We tabulate the
processing methods in table II.

If the first encountered node is mathematic notation, such
as “47 “-7, “*¥”_or “/”, the entire loop subtree will be replaced
with a text node of “count”. If the first encountered symbol is
“=" we will give an “assignment” text node as the summary
of the loop body. The summary will be taken as “judge” if

TABLE II: Special nodes

Types of nodes Related symbols Replacement as text nodes
Operation node Cqr, SR Dor <L “count”
Assignment node “=r “assignment”
“break”
Control node “return true” “judge”
“return false”

control statements such as “break”, “return true” or “return
false” is first encountered.

3) Other situations: If there are no special nodes in the loop
body, we select the last node in the loop subtree to replace the
loop body.

After pruning the AST, we expand the AST as normal
text stream of code snippet. It should be noted that the code
structure information has been explicitly embed in the code
snippets. To help clarify our algorithm, we give an example
in table III to show the difference of the three strategies.

TABLE III: Code snippets after pruning ASTs

Before pruning After pruning

void queuelsEmpty() {
for (Node p = head; p != null;
p = p.next)
{Itr it = p.get();

void queuelsEmpty() {
it shutdown ;

Method Call if (it != null) { head = null;
p.clear(); itrs = null;
it.shutdown();} } }

head = null;
itrs = null;}

public Contactlrc getContact(final

String id) { public Contactlrc

P U etContact
if (id == null | | id.isEmpty()) { (gﬁnal String id) {
return null; if (id == null ||
Special Nodes for (Contactlrc contact : ld‘lsﬁgsz(l)ul{l.

this.contacts) { }
if (id.equals(
contact.getAddress())) { Judge 1I:
return contact;} } return nulk
return null;}
public void removeAt
(int index, int size) {
final int end = Math.
min(mSize, index + size);
for (int i = index; i | end; i++) {
removeAt(i);

}
} }

public void removeAt
(int index, int size)
Others final int end = Math.
min(mSize, index + size)
removeAt(i);

B. Sequence learning

We build a sequence-to-sequence generation system for
code summarization task. Our approach use RNN with
attention-based mechanism and encoder-decoder architecture
to produce code summaries. The network architecture is shown
in figure 4

The RNN Encoder-Decoder with attention-based mechanis-
m consists of two RNN that act as an encoder layer and
a decoder layer. The encoder layer maps a variable-length
source sequence to a fixed-length vector. The decoder layer
maps the vector representation back to a variable-length target
sequence [17]. The biggest difference in the attention model
is that it does not require the encoder to encode all input
information into a fixed-length vector [18].
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Fig. 4: Basic framework of encoder-decoder neural network

In this paper, we use the LSTM cell for encoder and
decoder layers. LSTM has been shown to have good per-
formance in text translation model with attention mechanism
to generate one word at a time. A detail introduction of the
LSTM and encoder-decoder related neural network can be seen
in [19] [20].

IV. EXPERIMENTS
A. Dataset

In this section, we describe the dataset used in this paper.
We collect data from GitHub which is one of the most popular
open source community in the world. All the data can be
downloaded in the Trustie® , a famous open source community
in China [21].

We briefly describe the dataset generation process. First, we
search in the GHTorrent [22] and use Kraken [23] to crawl
the top 1500 popular Java projects ranked by star numbers.
Second, we use java-parser* tools to analyze source code and
extract the code snippets and comments of java API respective-
ly [24]. Those pairs of code snippets and text comments will
be treated as training data for our neural network models. In
addition, to improve data quality, we remove noisy comments
in the dataset. Specifically, we remove the comments shorter
than two words. Special symbols except dash “-”” and underline
“_” are also removed. Eventually, we generate 396,184 pairs
of code snippets and summaries. As shown in table IV, the
average length of code snippets is of 108.7 words. The average
length of text summaries is of 8.8 words.

TABLE 1V: Basic information of datasets

Total pairs
396,184

Average code length  Average summary length
108.7 8.8

B. Experiment settings

We implement the CDE-Model based on Tensorflow>. We

build an encoder-decoder network with 6 layers each with 128
3www.trustie.net
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units. We restrict the input vocabulary size to the top 40,000
most frequent code tokens, and the output text vocabulary to
the top 40,000 most frequent tokens in the training set. We
train the models with a batch size of 128 and a learning rate
a of 0.5. We do not stop training the model until perplexity
score becomes stable. We use 85% of the dataset for training,
10% for validation and 5% for testing. We has published all
of our data and codes in Trustie®.

To compare our models with the other methods, we also
implement two other models based on the CDE-Model. The
Del-Model just removes the loop structure in the code snippets
while the Gen-Model keeps the code unchanged. We list the
three models in table V.

TABLE V: Methods to be compared in experiments

Methods Description
CDE-Model Replace the loop structure with heuristic strategies
Del-Model Delete the loop structure in the code snippets
Gen-Model  Keep the loop structure unchanged in the code snippets

C. Evaluation metrics

We use Bilingual evaluation understudy (BLEU) score as
the evaluation metric in this paper. BLEU is an algorithm for
evaluating the quality of machine translated text from one
natural language to another [25]. Recently, it has become
a popular evaluation matric in deep learning based code
summarization. In this paper, we report the average BLEU-
4 score in experiments, which is often used to measure the
quality of text sentences.

D. Experimental results

We tabulate the experiments results in table VI. We find
that the CDE-Model outperforms the other methods by a large
margin. Specifically, the BLEU-4 values (the second column
in table VI) of the CDE-Model is 10.4% higher than the Del-
Model and 32.5% higher than the Gen-Model. In addition, we
conduct a detailed performance analysis on the code snippets
containing loop structure. In our test dataset, there are 2296
code snippets which contain the loop nodes. We measure
the BLEU-4 score (the third column in table VI) on this
data and find that the CDE-Model is much better than the
other methods. Specifically, the BLEU-4 score of the CDE-
Model is 6.7% higher than the Del-Model and 85.38% higher
than the Gen-Model. This means that utilizing code structure
information with empirical data processing strategies into deep
learning models can improve the code summarization task
significantly.

TABLE VI: BLEU-4 score of different methods

Models BLEU-4 values BLEU-4 values containing loop node
CDE-Model 0.52801 0.47548
Del-Model 0.47817 0.42813
Gen-Model 0.37254 0.23058

Shttps://www.trustie.net/projects/1738



Second, we randomly sample 100 code snippets containing
loop nodes to evaluate the three methods. As shown in figure 5,
the performance curve of the CDE-Model wins the Del-Model
and the Gen-Model in most cases. This further demonstrates
that the loop structure has significant impact on the model
performance. Replacing the loop structure (by the CDE-model)
is much better than the methods that delete the loop structure
(by the Del-Model) or keep the loop structure unchanged (by
the Gen-Model).
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Fig. 5: BLEU-4 score on the sampled data

Third , we analyze the BLEU-4 score of the three methods
on the code snippets that satisfying the three conditions (see
Section III). As shown in table VII. We find that the BLEU-4
score of the CDE-Model is always better than others in all the
three conditions. Specifically, the BLEU-4 score of the CDE-
Model is 7% higher than the Del-Model and 84.91% higher
than the Gen-Model in method call condition. Besides, the
CDE-Model owns the best performance than others in special
nodes condition. Whats more, the BLEU-4 score of the CDE-
Model is 4.36% higher than the Del-Model and 66.16% higher
than the Gen-Model in others condition. This results mean
that the three strategies proposed in the CDE-model are very
effective.

TABLE VII: BLEU-4 score in three different strategies

Models CDE-Model  Del-Model  Gen-Model
Method call 0.42410 0.39617 0.22935
Special nodes 0.52627 0.51252 0.25674

Others 0.47175 0.45205 0.28392

E. Case study

Why does the CDE-Model perform better than other two
methods? In this subsection, we conducted a detailed case
study for qualitative analysis.

Table VIII shows a code snippet with a loop body. The
gold standard is written by professional developers. We can
see that the code summary generated by our CDE-Model is
the most closer to the gold standard compared with the Del-
Model and the Gen-Models. Our method successfully captures
the semantics of “empty test” while the summaries generate
by the Del-Model and the Gen-Model is not meaningful.

For the poor results of Gen-Model, it may be the reason
that the loop structure in normal code snippets is usually very
complex. Blindly feeding loop body into the encoder-decoder
LSTM network may introduce noise. This is why the word
“clear” appears both in loop body and Gen-Model summary.

Although the Del-Model removes the noisy loop structure,
it loses too much information and thus cannot generate good
results. Therefore, in deep learning based code summarization
task, it is very important to consider the inherent code structure
information.

TABLE VIII: Code snippets and summaries

void queuelsEmpty() {
for (Node p = head; p != null; p = p.next){
Itr it = p.get();
if (it != null) {
p-clear();
it.shutdown();

}

head = null;
itrs = null;

Code snippet

Gold standard | Called whenever the queue becomes empty

CDE-Model Called when the buffer has been empty
Del-Model Called to iterate the observers of this node
Gen-Model The clear blocks that have been returned

V. CONCLUSION & FUTURE WORK

In this paper, we present and implementation a novel code
summarization method name the CDE-Model which combines
the deep learning and code structure information. The major
feature of the CDE-Model is that it traverses the abstract syn-
tax tree of code snippets to manipulate the complex structural
code body to generate intermediate code snippets by empirical
strategies. After that, the CDE-model learns an encode-decoder
LSTM network for text generation. We conduct large-scale
empirical study on 1500 popular Java OSS projects in GitHub.
The experimental results and the case study demonstrate that
our method is effective.

In the future work, we will try to exploit more advanced
sequence learning models to directly encoding AST structure
for long code snippets. Besides, we will also study other deep
learning methods such as deep reinforcement learning.
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