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A B S T R A C T

Blockchain offers new ways to the data sharing-based collaboration among IoT devices when a centralized IT
infrastructure is unavailable. As one of the critical elements in a Blockchain system, the existing consensus
algorithms still have some weaknesses, such as energy-wasting, low throughput, high latency, and increased
network communication requirements. In this paper, we focus on designing a highly efficient Blockchain
consensus algorithm for data sharing among IoT devices. We present the detailed design of Teegraph, which
is a Trusted Execution Environment (TEE) and Directed Acyclic Graph (DAG)-based consensus algorithm. A
proof-of-concept implementation of Teegraph is presented. The simulation results demonstrate that TEE usage
in Teegraph is more efficient than that of the existing state of the art TEE-based consensus algorithms such
as MinBFT and MinZyzzyva. Moreover, Teegraph outperforms Hashgraph, one of the most popular DAG-based
consensus algorithms in throughput and latency.
1. Introduction

Data sharing in IoT is the key to IoT devices to collaborate. How-
ever, it is not easy for these non-trusting devices to achieve data sharing
without a trusted intermediary [1]. Therefore, it is a challenge to share
data among the distributed IoT devices when a centralized IT infras-
tructure is unavailable. According to IBM infographic, Blockchain [2,3],
which has been developed for more than ten years, is promised to be
a game-changer for IoT [4,5]. Blockchain can offer new ways to the
data sharing among IoT devices without setting up a complicated and
expensive centralized IT infrastructure [6–8]. To leverage Blockchain
into IoT, the first thing to consider is the consensus algorithm [9].
Therefore, we summarize three main requirements for the consensus
algorithm used for data sharing in IoT: (1) High-efficient, the consensus
algorithm must have a high throughput to process the transactions, and
low latency for devices to communicate with each other. (2) Different
devices in a device-swarm may be equipped with different hardware
for different sub-tasks. For a sub-task, the swarm may be separated,
while for another task, these sub-swarms may gather-together. So dy-
namical changing of the consensus subjects must be archived in the
consensus algorithm. (3) The consensus algorithm must be Byzantine
Fault-Tolerant. The IoT devices may be attacked by hackers and then
have malicious behaviors. Therefore, the consensus algorithm must
guarantee that the consensus can still be reached in the presence
of these malicious behaviors. According to our analysis, most of the
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existing consensus algorithms used for crypto-currencies are based on
Proof of Work (PoW) or Practical Byzantine Fault Tolerance (PBFT).
However, the PoW-based consensus algorithms encounter high com-
puting power costs, long confirmation times, and poor scalability. The
PBFT-based consensus algorithms improve the throughput, while the
increased requirements for network restricts the system performance
in a large-scale environment [10,11]. Although Algorand [12] uses a
verifiable random function to select a committee of nodes that partici-
pate in a novel Byzantine consensus protocol and solves the scalability
problem, this consensus protocol requires a high quality of network
connectivity. Therefore, we need to design a more efficient consensus
algorithm for IoT Blockchain instead of using the existing ones.

There is an assumption that the initialization of IoT devices is
controllable. We can unify these devices with the same hardware or
equip them with different hardware according to their functions. There-
fore, the Trusted Execution Environment (TEE) can be equipped with
them. There have been many studies in the academic field that applies
the TEE to distributed consensus algorithms. The TEE is commonly
known as an isolated processing environment in which applications
can be securely executed irrespective of the rest of the system [13].
TEEs help these algorithms to achieve Byzantine Fault-Tolerance, im-
prove efficiency, and reduce communication overhead [14]. Inspired
by these works, researchers have used TEEs to develop more efficient
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Blockchain systems. These studies apply TEEs to the chain-structure
Blockchains such as the Teechain [15] and the Proof-of-Luck consensus
algorithm [16]. Furthermore, researchers have proposed several con-
sensus algorithms based on Directed Acyclic Graph (DAG) including
Hashgraph [17], PHANTOM [18], Conflux [19], Byteball [20] and
IOTA [21], which improve the throughput and reduce the latency of
processing transactions comparing to the chain-structure Blockchains.
However, these Blockchains cannot achieve the dynamic changing of
the consensus subjects to adapt to the data sharing-based collaboration
for different tasks in IoT. According to our research and analysis, the
efficiency can still be improved if we leverage both the TEE and DAG
technology in IoT Blockchains. In our recent work [22], which was
published as a letter, we proposed a TEE and DAG-based consensus
algorithm called Teegraph for IoT Blockchains. Teegraph can help the
IoT devices to achieve the data sharing-based collaboration without a
centralized third party. The consensus degree of any event/transaction
can be shown to all the nodes in real-time. Furthermore, the shared
data cannot be tampered once it reaches consensus in Teegraph. All
the above features make Teegraph suitable for data sharing in IoT.
However, in that letter, we just presented a brief introduction of
Teegraph, which may confuse the readers about how Teegraph works.
Therefore, in this work, we will describe the detailed design of each key
element of Teegraph, including the communication model, the ‘‘single-
use of self-parent’’ mechanism, the ‘‘dynamic changing of the consensus
subjects’’ mechanism, and the ‘‘resource-saving’’ mechanism. We also
prove the safety and liveness of Teegraph. Furthermore, we present
several sets of simulation experiments to demonstrate the efficiency of
Teegraph.

The major contributions of this paper are:

• Single-use of self-parent mechanism: In Teegraph, the usage
of TEEs is much simpler and straightforward compared to the
existing TEE based consensus algorithms such as MinBFT [14] and
A2M [23]. The TEE-based ‘‘single-use of self-parent’’ mechanism
reduces the lower bound on the number of total participants from
3𝑓+1 to 2𝑓+1, in which 𝑓 is the maximum number of tolerated
Byzantine fault nodes. Furthermore, based on this mechanism,
the consensus process for Teegraph is more efficient than that of
Hashgraph.

• Dynamic changing of the consensus subjects mechanism: Tee-
graph supports the dynamic changing of the consensus subjects,
which means the nodes can join or exit freely without affecting
the consensus process.

• Resource-saving mechanism: We propose a resource-saving
mechanism, which is absent in the original Hashgraph, to reduce
the communication overhead and save storage resource when
there are no new transactions created. Nodes will stop sending
unnecessary empty events after all the non-empty events reaching
consensus.

The rest of this paper is organized as follows. Section 2 presents an
overview of the related work. Section 3. illustrates the overall system
model of Teegraph. We discuss the evaluation framework in Section 4.
The simulations and results are discussed in Section 5, and Section 6
concludes this paper.

2. Background and related work

This section summarizes the most relevant works, including the
DAG-based consensus algorithms and the TEE-based consensus algo-
rithms.

The DAG-based consensus algorithms: Hashgraph is one of the
most popular DAG-based Blockchains. The nodes communicate with
each other through a gossip protocol [24]. Moreover, the nodes not
only gossip about transactions but also gossip about gossip, which
2

means they also send the gossip history to their neighbors. Every honest
node will eventually have the same Hashgraph, which allows the agree-
ment to be achieved through virtual voting: Nodes do not send votes to
others over the Internet. Instead, benefit from the gossip about gossip
protocol, each node calculates what votes the others would have sent
according to the Hashgraph it holds. So nodes can reach the Byzantine
agreement for all events locally without any more communication.
However, according to our analysis, if a malicious participant creates a
fork in Hashgraph, the liveness can never be guaranteed if Hashgraph
is deployed as a public Blockchain. Even so, we can use Hashgraph
as a consortium Blockchain (The number of the participants for the
consensus process is specified, and the identity of the participants are
known to each other. We call this version of Hashgraph a consortium
version), the liveness problem can be solved because the fork can be
found easily. The participants will be kicked out of the consortium
if they are caught acting maliciously. Therefore, we implement the
consortium version of Hashgraph as the comparison in this paper.

The consensus algorithm of Byteball is also based on DAG. Every
node can send a transaction by packing it into a unit, and units are
linked to each other such that each unit includes one or more hashes
of earlier units. Just like Hashgraph, if unit 1 is an ancestor of unit 2
from node A, it means that node A has confirmed unit 1. There are 12
witnesses who are responsible for the units’ finality. The witnesses must
create units to confirm other units from the ordinary nodes all the time.
Byteball’s security relies on the principle that more than half of the
witnesses are honest. However, the throughput of Byteball is very low,
and the latency depends on the witnesses’ unit sending interval. Tangle
is a DAG-based consensus algorithm for IOTA. IOTA is also designed for
the IoT industry. When a node creates a transaction, it must approve
two previous transactions. These approvals are represented by directed
edges in DAG, just like Hashgraph and Byteball. If there are conflicting
transactions, the nodes need to decide which transaction will become
valid by running the Markov Chain Monte Carlo (MCMC) algorithm.
However, in the current version of IOTA, there is a fully centralized role
called ‘‘coordinator’’ to validate the transactions [25,26]. PHANTOM
follows Bitcoin’s model in almost every respect, including PoW, com-
putationally bounded attacker, probabilistic security guarantees, etc.
The only difference is the data structure: a block references several
predecessors rather than a single one. In Conflux, the throughput
bottleneck is at the processing capability of individual nodes instead
of the consensus algorithm. Similar to Bitcoin, Conflux also operates
with the energy-wasting PoW mechanism.

The TEE-based consensus algorithms: A Trusted Execution Envi-
ronment is a piece of hardware provided by recent commodity CPUs.
It is isolated from other parts of the system and can provide security
features such as isolated execution and applications’ integrity. TEEs
are becoming increasingly famous, the most common TEEs include
Intel Software Guard Extensions (SGX) [27] and ARM TRustZone [28].
Intel SGX runs on most modern x86 processors, and ARM TrustZone is
available on many ARM devices. Recently, many distributed consensus
algorithms utilize the power of TEEs to increase efficiency. MinBFT
and MinZyzzyva are proposed in [14]. MinBFT is a non-speculative
algorithm based on PBFT [29], while MinZyzzyva is a speculative
algorithm based on Zyzzyva [30]. In MinBFT and MinZyzzyva, the
TEE provides a tamperproof trusted counter service that can produce
a signed certificate proving that a certain counter value is uniquely
bound to some message. It guarantees that the malicious replica would
not make different correct replicas execute different operations as their
𝑖th operation. A2M provides the programming abstraction of a trusted
log, which leads to protocol designs immune to equivocation—the
ability of a faulty host to lie in different ways to different clients or
servers [23]. All these algorithms can also be deployed in Blockchain
systems. Teechain is a new off-chain payment protocol that utilizes
TEEs to perform secure, efficient, and scalable fund transfers on top
of a Blockchain, with asynchronous Blockchain access [15]. It brings
inspiration for our follow-up work, which is concentrated on the scala-

bility of Blockchains. In paper [16], the authors present how using TEEs
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Fig. 1. The Hashgraph.

or existing PoW schemes can make mining equitably distributed by
reventing the use of ASICs. They also propose a consensus algorithm
alled Proof-of-Luck, which uses a TEE platform’s random number gen-
rator to choose a consensus leader. This algorithm offers low-latency
ransaction validation.

For Hashgraph, a single-node fork attack needs little cost, while the
ost for recovering from a single-node attack is very high. PHANTOM
nd Conflux still operate with the energy-wasting PoW mechanism.
2M needs much storage for the logs, which brings the obstacle for

ts large-scale implementation. The usage of TEEs in MinBFT and
inZyzzyva is more complicated than our method. The DAG-based
lockchains can also be improved with the help of TEEs. Furthermore,
ll the work above cannot supports the dynamic changing of the con-
ensus subjects, which is necessary for IoT scenarios. So in this paper,
e design an innovative way to combine TEE and DAG technology for
lockchain consensus algorithm used in IoT scenarios.

. Design of Teegraph

In Teegraph, each node is responsible for packing its own transac-
ions. A node puts its transactions in an event (the left part of Fig. 1
hows the data structure of an event) and then sends the event to the
etwork by choosing a random neighbor as the destination. The nodes
ill also receive events from their neighbors. According to the events

hey receive, nodes can generate DAGs locally. When deciding whether
n event reaches consensus or not, each node can calculate what others
ould vote for an event, so no votes are sending through the network.
or example, in Fig. 1, event 2 is an ancestor of event 5 from node C, it
eans node C has voted ‘‘YES’’ for event 2. Moreover, every node that
olds this DAG can calculate how many votes an event gets. That is to
ay, nodes can reach consensus for all events locally, according to the
eegraph they hold.

.1. How to generate the graph

We reuse Hashgraph’s communication model ‘‘gossip about gossip’’,
hich is derived from the famous Dynamo proposed by Amazon [31].
eegraph consists of vertexes and columns. Each column represents a
ode, and each vertex in the columns represents a gossip event. An
vent in Teegraph is just like a block in a chain-structure Blockchain.
he difference is that in an event, two hash values are linking to

ts two parent events (There is only one parent for a block in the
hain-structure Blockchain). In Teegraph, every vertex, except for the
irst one in each column, has two downward edges, connecting to the
mmediately-preceding events called self-parent and other-parent. As
hown in Fig. 1, the self-parent of event 1 is event 2, and the other-
arent is event 3. The first time node B performing a gossip to node
, it sends all the events it has, including event 3, 4, and 6 to A. Time
3

lows up the graph, so lower vertices represent earlier events in history.
he number of nodes is precisely the number of columns in the graph.
very node generates the graph locally by adding events to columns
nd set edges according to the gossip history. When a node receives
vents from another node, it adds these events to his own graph. After
hat, it creates a new event and chooses a neighbor randomly to send
vents to. Fig. 2 shows the processes of generating the graph for node
, B, and C, respectively:
The initial state. There is only one event for each node: For node

, column A only has event 1, Column B and C are empty; for node B,
olumn B only has event 2, column A and C are empty; and for node
, column C only has event 3, column A and B are empty.
Step 1: Gossip from node A to B. Node A randomly chooses a

eighbor (Node B is chosen) to send events to. Before sending events,
ode A asks node B what node B has in all three columns. Then node
knows that node B only has one event in column B. According to the

ule, node A sends all the events it has while node B does not to node
. In this case, node A sends event 1 to node B. After receiving event
, node B creates a new event (event 4) and sets the other-parent of
vent 4 as event 1, the self-parent as event 2. In this step, the graphs
f node A and C remain the same.
Step 2: Gossip from node B to C. Node B randomly chooses a

eighbor (Node C is chosen) to send events to. The same as step 1, node
knows that node C only has one event in column C before sending

vents. According to the rule, node B sends event 1, 2 and 4 to node
. After receiving these events, node C creates a new event (event 5)
nd sets the other-parent of event 5 as event 4, the self-parent as event
. Now node C has event 1∼5. In this step, the graphs of node A and B
emain the same.
Step 3: Gossip from node C to A. Now there is a gossip from node

to A. In this case, node C sends event 2, 3, 4 and 5 to node A because
t this moment, node A only has event 1. After receiving these events,
ode A creates a new event (event 6) and sets the other-parent of event
as event 5, the self-parent as event 1. In this step, the graphs of node
and C remain the same. If in the next step, node A chooses node C

s the event-sending destination, it would only send event 6 because
ode C already has event 1∼5.

In the above processes, there is only one node sending events in
ach step. However, nodes can send events in parallel. That is to say,
hen there is a gossip from node A to B, there may be other gossips

rom node C to D, node E to F, etc.

.2. The single-use of self-parent mechanism

To launch a fork attack, a malicious node lies in creating two
ifferent events, putting them in the same place on his column (cre-
tes two different events and set one same self-parent to them), and
hen sending them to different neighbors. For most IoT scenarios, the
evice’s initialization is controllable. We can unify these devices with
he same hardware or equip them with different hardware according
o their functions. So in Teegraph, we leverage the TEE to prevent the
ork attack. We design a mechanism called single-use of self-parent, in
hich TEEs guarantee that every event can be a self-parent only once.
efore an event is sent to the network, it must get a TEE’s signature,
roving that its self-parent is set as a self-parent only once. There are
our steps to get the TEE’s trusted signature: (1) the node sends event
to the TEE; (2) the TEE compares event 𝑛’s self-parent hash with the
ash of event 𝑛− 1 which has been stored in its memory; (3) if equals,
he Tee signs event 𝑛 and sends it back to the node; (4) the TEE stores
he hash of event 𝑛 to replace the hash of event 𝑛 − 1 in its memory.
n step 3, if not equal, the TEE dumps event 𝑛 and stops the process.
n a word, if event 𝑛 − 1 in a TEE’s memory is set as the self-parent of
vent 𝑛, event 𝑛 − 1 will be replaced by event 𝑛 in the TEE’s memory
mmediately. A node can never create two different events with the
ame self-parent, which means the fork attack can never happen. The
lgorithm for an event to get a signature from the TEE is Algorithm 1.
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Algorithm 1 The algorithm runs on a TEE.
// 𝑡𝑒𝑚𝑝 is initialized to 0.
Receive an event 𝑛 from the node
if The self-parent of event 𝑛 equals 𝑡𝑒𝑚𝑝 then

Sign event 𝑛 and sends it back to the node
Set 𝑡𝑒𝑚𝑝 to event 𝑛

else
Dump event 𝑛

end if

So when receiving an event, the event’s validation should add a new
tem, which is the validation of the TEE’s signature. As shown in Fig. 1,
t the first time node C receives sync from node A, it receives event 1,
, 3 and 4 because at that moment, node A has event 1, 2, 3, 4, and
. In contrast, node C only has event 6 (According to the gossip rule,
ode A sends all the event it has while node C does not so far. So for
very node, an event is received only once). After node C verifies all
he received events, it creates a new event 5 and sets its other-parent
s event 1, which means node C votes ‘‘YES’’ to event 1, 2, 3, and
. So if node A creates an event and sets its other-parent as event 𝑛
rom another node, it means that node A has voted ‘‘YES’’ to event 𝑛
nd all the ancestors of event 𝑛. So if an event gets more than half
f the nodes’ votes, which means the event has been verified by half
f the nodes, the event reaches consensus. As shown in Fig. 3, all the
ark events have reached a consensus because they all have received
ore than half of the nodes’ votes. Just like the famous Crash Fault-
olerance (CFT) algorithm RAFT [32] and Paxos [33], the nodes cannot
end equivocal messages (votes) to others. Therefore, half of the nodes’
otes are enough for an event to reach consensus. It is proved in [34,35]
hat the Byzantine Fault-Tolerance (BFT) problem complexity can be
educed to that of CFT problems if a malicious server cannot lie in
ifferent ways to different clients or servers. Moreover, in this case, the
ower bound on the number of total participants required to tolerate 𝑓
aults can be reduced from 3𝑓+1 to 2𝑓+1. In Teegraph, with the help
4

f TEEs, a malicious node can never lie to other honest nodes. Hence,
he complicated consensus process in Hashgraph is unnecessary, and
𝑓+1 nodes are enough to tolerate 𝑓 malicious nodes. The consensus
lgorithm runs on a node is Algorithm 2.

Algorithm 2 The consensus algorithm runs on a node.
Run the following two loops in parallel threads
loop

Send all known events including the event it newly created to a
random node

end loop
loop

Receive events from its neighbor node 𝑁
if All the events are valid then

Create a new event 𝑚
Set the other-parent of event 𝑚 as the newest event from node
𝑁
Set the self-parent of event 𝑚 as the last event this node just
created
Send the newly created event 𝑚 to TEE to get a signature

else
Dump all the events received

end if
Find new events that reach consensus

end loop

3.3. The dynamic changing of the consensus subjects

Different kinds of devices may form a swarm in some IoT scenarios
and work together for a task without a trusted intermediary. Data
sharing is required among these non-trusting devices for collaboration.
Moreover, the shared data must reach consensus among these devices
before the swarm uses it. Most consensus algorithms can achieve this
when the consensus subjects are always the same (nodes cannot be

replaced, no new nodes join, and no nodes exit). However, there
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Fig. 3. The consensus process in Teegraph.

re often multiple sub-tasks, requiring the swarm to be separated
nto several different sub-swarms. For example, in an earthquake re-
ief work, a swarm that is consist of drones and unmanned vehicles
eeds to be separated for different sub-tasks: the drones will detect
he overall environment, and the unmanned vehicles will rescue the
iscovered victims. After completing their sub-tasks, these sub-swarms
ay recombine for another new task, as shown in Fig. 4. Therefore,

he consensus algorithm for IoT Blockchains needs to have the ability
o reach consensus when the consensus subjects change continuously
ithout the support of the trusted intermediary.

When the swarm starts to perform a task, all devices are con-
ected. They can communicate with each other arbitrarily. Therefore,
Teegraph is built. When some devices are separated as sub-swarms

o perform sub-tasks, the devices belonging to the same sub-swarm
ommunicate with each other internally. As shown in Fig. 5, sub-swarm
and B are separated from all devices to perform their respective sub-

asks. The events from sub-swarm A (B) reach consensus once they
et half ‘‘YES’’ votes from the devices in sub-swarm A (B). After the
warm is recombined, they resume arbitrary communication in the
ntire network, and the events must get half of ‘‘YES’’ votes from all
he devices in the swarm to reach consensus.

.4. The resource-saving mechanism

In the original Hashgraph, every node needs to create and send
vents all the time to validate other nodes’ events. Even a node has
o transaction to send, it must create and send empty events, which
ontain no transaction. However, when there is no new transaction
reated and all the existing transactions have reached consensus, these
mpty events will not contribute to the system anymore but waste the
etwork and storage resources. To solve this problem, we propose a
esource-saving mechanism for Teegraph. According to this mechanism,
odes can stop gossiping at the right time: Before a node creates and
ends an empty event, it can make a judgment on whether it should
o so according to the Teegraph structure it holds. As shown in Fig. 6,
he light circles represent empty events, while the dark ones represent
he events containing transactions. Event 1 is the latest event that
ontains transactions, and event 2∼5 have collected enough votes to

confirm event 1. When node A creates event 6, it can make sure that
all the nodes in the system have confirmed event 1 because event
6 is the offspring of event 2∼5, all of which have collected enough
votes for event 1. Moreover, there are not unconfirmed transactions in
the system. To reduce network communication costs and save storage
resources, node A can stop gossiping after it sends event 6. When
another node receives event 6, it can also make sure that all the other
nodes have confirmed event 1. So it will stop gossiping. The gossip-
based communication will be restarted by any node by creating an
event containing new transactions.
5

3.5. The correctness of Teegraph

In this subsection, we discuss the correctness of Teegraph. As a
Byzantine Fault-Tolerant consensus algorithm, Teegraph must guaran-
tee the Safety and Liveness.

Safety: Safety means the consistency of the Blockchain data. As
described in sub Section 3.2, a node can never generate a fork in
Teegraph. Although a node can create two conflictive events, there
must exist a parent–child relationship between these two events, which
means if a node gets the child-event, it must get the parent-event first.
According to the mechanism, if the parent-event is invalid, all the
child-events of this parent-event are regarded as invalid events. If the
child-event is invalid, the nodes dump it. Only the parent-event of these
two conflictive events may get more than half of the ‘‘YES’’ votes and
reach consensus, proving the Safety in Teegraph.

Liveness: Liveness means that valid events created by honest nodes
will always reach consensus. In Teegraph, an event must get the votes
from half of the nodes before it reaches consensus. A valid event can
always pass the validation and get a ‘‘YES’’ vote when sent to an honest
node. If an event can reach the most honest nodes, it can get majority
‘‘YES’’ votes from these honest nodes. The gossip-based dissemination
can make the events get spread exponentially fast through the network.
In general, it takes O(logN) rounds to reach all nodes, where 𝑁 is the
number of nodes [36,37]. So the gossip protocol guarantees that any
event from an honest node can eventually reach all the honest nodes,
which proves the Liveness in Teegraph.

4. Evaluation framework

In general, the higher decentralization and security, the lower
throughput, such as PoW; or the higher throughput and security, the
lower decentralization, such as PBFT. Based on our analysis of the
existing Blockchain consensus algorithms and surveys such as [38,39],
and [40], we summarize three broad themes of our evaluation frame-
work: effectiveness, security, and decentralization. The algorithms can
only meet two aspects and sacrifices the other. It is a paradox of the
impossible triangle of Blockchain.

Effectiveness: The effectiveness dimension includes the perfor-
ance of all aspects of Blockchain, such as throughput, that is, the
umber of transactions the system can process in a unit of time;
he transaction confirmation latency, that is, the time required for a
ransaction from the generation to the final confirmation; scalability,
hat is, the number of the nodes that can participate in the consensus;
nd the resources consumption such as CPU, network bandwidth,
emory, computing power, etc. The scalability of Teegraph depends

n the gossip protocol. The gossip-based dissemination provides some
robabilistic guarantees of message delivery, and the number of times
peer needs to gossip is logarithmic in the size of the system [36,37].

o Teegraph can be deployed to large-scale distributed systems. The
hroughput and latency will be discussed in sub Section 5.2.
Security: As for Teegraph, we assume that less than 1/2 of the

odes are dis-honest (Teegraph can tolerate more than 1/3 Byzantine
odes because the TEE can prevent the equivocation of nodes). It
s also assumed that the asymmetric encryption algorithm and the
ash function are secure so that signatures cannot be forged, and
ash collisions can never be found. The security dimension refers to
he ability of the Blockchain to resist various attacks, such as double
pending (attacks the consistency) [41], Denial of Service (DoS), Sybil
ttacks, selfish mining, etc. The consistency and liveness of Teegraph
ave been discussed in sub Section 3.5, which indicates that Teegraph
an resist double-spending. It is also resilient to DoS attacks because
o leader is selected as the accountant. Thus, the attackers cannot
ecide which node to attack. Sybil attack (A single node creates or
anipulates many identities in the network, thus compromising the
etwork) will not succeed because every node must be equipped with
TEE. Selfish mining is only for PoW based Blockchains [42], which
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Fig. 4. The swarm separates and sub-swarms recombine.
Fig. 5. The Teegraph with the dynamic changing of the consensus subjects.

Fig. 6. The resource-saving mechanism.
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Fig. 7. The comparison of TEE efficiency between Teegraph and MinBFT (each
experiment is simulated for 10 times).

affects the fairness of the competition for accounting rights. Therefore,
Teegraph is highly secure under our reasonable assumptions.

Decentralization: The decentralization dimension refers to the pro-
portion of the nodes participating in the consensus in the total nodes,
whether there are requirements toward participants, and whether the
accounting rights distribution is fair, etc. For Teegraph, every node is
responsible for his own transactions, so every node is the accountant,
which means the accounting rights distribution is fair. Although all the
nodes participate in the consensus process, they must trust the TEEs.
Hence, to some degree, Teegraph sacrifices decentralization to get high
performance and security.

5. Simulations

To demonstrate the efficiency of our algorithm, in this section, we
present a proof-of-concept implementation of TEEs within Teegraph.

5.1. Simulation experiments for TEE

In this subsection, we demonstrate the efficiency of TEE in Tee-
graph. We implement the TEE-based tamperproof trusted counter ser-
vice in MinBFT as the comparison. In the first experiment, we compare
the efficiency of signing a message. Then in the second experiment,
we compare the efficiency of verifying a message with the Tee’s signa-
ture. For the first experiment, we sign 500,000 messages in Teegraph
and MinBFT, respectively, and record the time used. For the second
experiment, we verify those messages from the first experiment and
record the time. Both of the experiments are simulated ten times. The
results are shown in Fig. 7. For both signing and verifying messages,
Teegraph needs less time than MinBFT. The TEE in MinBFT provides
a tamperproof trusted counter service, and every node should store
the TEEs’ counters of all the other nodes. Moreover, when verifying
a message, Teegraph only needs to verify the signature, while MinBFT
needs to verify the signature along with the counter’s value.
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Fig. 8. The comparison of throughput and latency between Teegraph and Hashgraph
with different number of nodes.

Fig. 9. The comparison of scalability between Teegraph and Hashgraph according to
throughput and latency.

Fig. 10. The comparison of throughput and latency between Teegraph and Hashgraph
with different network latency (r+p).

Fig. 11. The comparison of throughput and latency between Teegraph and Hashgraph
applying the ‘‘fail - skip’’ strategy.
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o

5.2. Simulation experiments for throughput and latency

In this subsection, each node is simulated as a Java thread. The
experiments are running in Eclipse and the nodes (threads) send and
receive transactions, validate and confirm events in parallel. We use 𝑟
to represent the event requesting interval (the nodes generate events
periodically and the time interval is 𝑟) and 𝑝 to represent the event
propagation time. Then the network delay can be represented by 𝑟+ 𝑝.
We compare the throughput (eps, number of events processed per
second) and the latency (ltc, the average time for an event to reach
consensus, from its generation to confirmation) of Teegraph to those
of Hashgraph (the consortium version). The simulations are set in
different situations, including different numbers of nodes and different
network delay (different event requesting intervals and different event
propagation time).

In the first simulation, we study the impact of the number of all
nodes. The number of nodes ranges from 4 to 50. We set 𝑟+𝑝= 200 ms
in the first experiment. Then in a more complex situation, 𝑟+𝑝 is set to

random value ranging from 200 to 500 ms. The results are shown in
ig. 8. The result suggests that when the number of nodes increases,
he latency gets higher. The more nodes, the more events created,
ut the more votes an event needs to reach consensus. Therefore,
he throughput reaches a peak when there are about 30 nodes for
ashgraph (the throughput peak for Teegraph can be found in the
ext simulation). In a relatively stable network without failure nodes,
he latency of Hashgraph has some outliers. That is because for an
vent to reach consensus, Hashgraph needs three or more rounds of the
ajority-votes collection (Teegraph only needs one round). Teegraph
eeds much fewer communication steps than Hashgraph. Therefore, in
his simulation, Teegraph outperforms Hashgraph both in throughput
nd latency. The simulation about the impact of failure nodes can be
ound in our recent work [22], in which the number of nodes is set to
0 and the number of failure nodes ranges from 1 to 24. Results in that
ork suggest that the throughput was reduced and latency increased
ith an increase in the number of failure nodes. Teegraph is not

onsiderably affected when failure nodes increase, and it outperforms
ashgraph. Moreover, when the number of failure nodes is greater than
6, Hashgraph stops working, whereas Teegraph continues to function
p to greater than 24 failure nodes.

To analyze the scalability of Teegraph, we add the nodes up to 150.
n this simulation, the number of nodes is set to 10, 20, 30, . . . , 150.
hese nodes are full nodes that validate every block and transaction by
hecking them acoording to the network’s consensus rules. Full nodes
ust also have a copy of the blockchain, so every transaction and

lock that has ever taken place on the Blockchain must be downloaded.
lthough there may exist massive IoT devices, most of them are light
odes, which does not need to download all the blocks and transactions.
etting all blocks and transactions is unnecessary for light nodes who

ust want to send or receive data. They do not care about old trans-
ctions. They do not care about other nodes’ transactions. They only
are for their own transactions. Therefore, light node was invented to
ave space and computing time. A light node only downloads block
eaders to validate the authenticity of the transactions. Light nodes
annot join the consensus process. Therefore, the simulation scale (150
ull nodes) is reasonable. The results are shown in Fig. 9, which suggest
hat as the number of nodes increases, the latency is higher. The latency
f Teegraph is relatively stable, while when the nodes are more than
20, the latency of Hashgraph has a dramatic increase. The throughput
eaches a peak when there are about 60 nodes for Teegraph. Moreover,
hen the nodes are more than 90, the throughput of Hashgraph has
sharp drop, while Teegraph can still work normally even when the

umber of nodes is 150 (the throughput of Teegraph is about 60 eps
hile that of Hashgraph is only about 3 eps). So Teegraph has better

calability than Hashgraph.
Now we study the impact of the network delay (represented by 𝑟+𝑝)
n the throughput and latency. The number of the nodes is set to 50,
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and we run our simulator for different 𝑟+ 𝑝 ranging from 200 ms to 2𝑠.
The results are shown in Fig. 10. The results suggest that the latency
is positively related to the network delay. Our algorithm is much less
affected than Hashgraph when the network delay increases. Also, our
algorithm outperforms Hashgraph in both throughput and latency, no
matter what the network delay is.

At last, we perform simulation experiments in more complex
situations—the numbers of nodes ranging from 4 to 50, and we apply
the ‘‘fail - skip’’ strategy (If a node waits for events for more than
500 ms from a neighbor, it will skip this neighbor and request events
from another node). In the first situation, 𝑟+ 𝑝 is set to a random value
ranging from 100 to 1100 ms, while in the second situation, it is set
to a random value ranging from 100 to 1600 ms (the network delay
of the second situation is larger than the first one). The results are
shown in Fig. 11, which suggest that as the network delay increases,
our algorithm is less affected and also outperforms Hashgraph in both
throughput and latency.

6. Conclusion

Leveraging Blockchain into IoT offers new ways to the data sharing-
based collaboration among IoT devices without setting up a compli-
cated and expensive centralized IT infrastructure. Blockchains can build
trust between IoT devices, reduce collusion and tampering risks, and
cut down costs by removing overhead associated with middlemen and
intermediaries. The Blockchain-IoT combination is powerful and brings
significant transformations across many IoT applications. This paper
presents the detailed design of a consensus algorithm called Teegraph,
which is based on TEE and DAG. Teegraph guarantees that a malicious
node can never lie to the others. So the lower bound on the number
of total participants required to tolerate 𝑓 Byzantine Faults is reduced
from 3𝑓+1 to 2𝑓+1. The consensus degree of every event in Teegraph
can be shown to every node in real-time. Therefore, all the IoT devices
can decide whether the shared data can be used. Teegraph also supports
the dynamical joining or exiting of the IoT devices for different tasks.
Moreover, there is a resource-saving mechanism in Teegraph to reduce
the communication overhead and save storage when there are no new
transactions created. A proof-of-concept implementation of Teegraph
is presented in this paper. The simulation results demonstrate that
TEE usage in Teegraph is more efficient than that of MinBFT and
Minzyzzyva. Moreover, Teegraph outperforms Hashgraph (we imple-
ment the consortium version of Hashgraph) both in throughput and
latency.

Deploying Teegraph in the real-life scenario is one of our future
directions. We will also leverage Teegraph to provide a data, storage,
network, and computing resources trading market [43,44] based on
smart contract [45,46]. Besides, we plan to focus on cross-chain tech-
nology [47–49] in our future work to break the information islands and
achieve value transfer among different Blockchains.
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