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Abstract: Code review is an important process to reduce code defects and improve software quality. In social coding 
communities like GitHub, as everyone can submit Pull-Requests, code review plays a more important role than ever 
before, and the process is quite time-consuming. Therefore, finding and recommending proper reviewers for the 
emerging Pull-Requests becomes a vital task. However, most of the current studies mainly focus on recommending 
reviewers by checking whether they will participate or not without differentiating the participation types. In this paper, 
we develop a two-layer reviewer recommendation model to recommend reviewers for Pull-Requests (PRs) in GitHub 
projects from the technical and managerial perspectives. For the first layer, we recommend suitable developers to 
review the target PRs based on a hybrid recommendation method. For the second layer, after getting the 
recommendation results from the first layer, we specify whether the target developer will technically or managerially 
participate in the reviewing process. We conducted experiments on two popular projects in GitHub, and tested the 
approach using PRs created between February 2016 and February 2017. The results show that the first layer of our 
recommendation model performs better than the previous work, and the second layer can effectively differentiate the 
types of participation. 
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1 Introduction 
 

In the past 30 years, code review has been 
regarded as the best practice of software 
engineering both in industry and open source 
communities [1], which can help to improve the 
quality of source code. Traditionally, code 
reviewers are third-party developers who can 
identify the defects in source code before 
integrating into the system [2], and the code review 

process should be held in group meetings, which 
will cost a lot of time. With the development of 
social coding communities like GitHub, traditional 
code review is gradually replaced by modern code 
review [3]. When a code change is submitted to 
developers for reviewing, the reviewers will 
cooperate with each other to discuss and give 
suggestions about the code. 

If the change meets the need of the project and 
is supported by many reviewers, it will be 
integrated into the project’s source code. However,  
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code review actually costs a lot of time, and the 
reviewers invited are not always suitable for the job 
[4]. Therefore, in order to reduce the time cost and 
improve the effectiveness of code review, it is 
necessary to recommend suitable reviewers to 
different code changes. 

With the development of distributed software 
the pull-based model becomes more and more 
popular because it can lower the barrier of 
developers, which means that everyone can submit 
Pull-Requests to the repository. Because the amount 
of code changes increases, open source projects 
need more developers to review the PRs and guard 
the quality of the project. As there are so many 
developers in open source repositories and the 
number increases sharply, it becomes more and 
more important to recommend suitable and 
qualified reviewers to PRs. 

However, there are also different kinds of 
reviews for PRs. We take Ruby on Rails project in 
GitHub as an example. 

From Figures 1 and 2, we can see that some 
reviewers will check whether there is any problem 
in the code change, other people will just 
managerially comment below the PR description. 
These two kinds of reviewers form into the 

reviewing group of PRs in GitHub, and promote the 
development of open source projects cooperatively. 
Therefore, it is basically important to tell different 
kinds of reviewers apart so that we can find 
reviewers with different responsibility and 
recommend needed reviewers to different PRs. 

Looking at the above factors, we find that for 
modern code review especially pull-based models, 
it is necessary to recommend developers to review 
code changes. There have already been many 
studies focusing on code reviewer recommendation. 
THONGTANUNAM et al [2], BALACHANDRAN 
[5], JEONG et al [6] and YU et al [7] focused on 
recommending suitable developers for code 
changes or PRs, either by calculating the similarity 
of developers’ technical focus or generating features 
from the modified source code. However, they just 
focus on the precision, recall or accuracy values; 
the reviewers that they recommend still need to be 
analyzed. Meanwhile, to the best of our knowledge, 
there are few studies focusing on recommending 
fine-grained reviewers for code changes. Therefore, 
in this paper, we will focus on analyzing the 
problem of existing code reviewer recommendation 
methods and improve them by promoting the 
p e r f o r m a n c e  a n d  p r o p o s e  a  f i n e - g r a i n e d  

 

  
Figure 1 Example of technical reviewer 

 

  
Figure 2 Example of managerial reviewer 
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recommendation model. 

The contributions of our work are as follows: 
We statistically analyze the review process in Ruby 
on Rails, and find that non-active reviewers are 
important to the reviewing process. What’s more, 
code reviewer recommendation is of great 
importance to such time-consuming process. We 
reproduce a popular and effective recommendation 
algorithm (IR-based recommendation) and verify 
that the existing recommendation approach is easy 
to get into overfitting trouble, namely, excessive 
reviewing tasks tend to be recommended to active 
reviewers. We propose a hybrid reviewer 
recommendation approach which combines the 
expertise based method with existing IR and 
revfinder methods. We validate our approach on 
more than 36000 PRs in two popular GitHub 
projects. The result suggests that the hybrid method 
outperforms other separate methods regardless of 
the reviewers’ activeness. 

We propose a two-layer code reviewer 
recommendation model by combining the hybrid 
recommendation method and a SVM classifier 
which subdivide the reviewers into technical and 
managerial types. The results suggest the validation 
of our approach in both layers. 

The rest of this paper is organized as follows. 
Section 2 reviews a few related studies. Section 3 
describes the empirical study of PRs in Ruby on 
Rails. Section 4 presents the recommendation 
methods for the first layer. Section 5 describes the 
experiment settings. Section 6 discusses the 
experiment results. Section 7 elaborates the 
conclusion and describe the future plans of the 
study. 
 
2 Related work 
 
2.1 Modern code review 

Code review is widely-agreed as the best 
software engineering practice in both industrial and 
open source contexts [1, 3], which helps to improve 
the quality of source code and reduce the defects in 
open source repositories. Traditionally, code 
reviewing is a time-consuming and heavy-weight 
process, which requires experts and a group 
meeting most often [8]. In order to speed up the 
process and improve the effectiveness at the same 
time, there comes up many modern code review 
methods. MCINTOSH et al [9] evaluated the 

impact of code review coverage to the software 
quality. After that, they extended their work and 
studied the influence of different types of code 
reviews through an empirical study [10]. BOSU   
et al [11] and MORALES et al [12] also found that 
code review did have impact on security 
vulnerabilities and design quality respectively. In 
addition to empirical studies, there are also many 
studies focusing on the development of code 
reviewing tools. For example, MUKADAM et al 
[13] developed Gerrit for reviewing android based 
source code. 

From these studies, we can see that modern 
code review is becoming a more and more 
important process in software development, and 
good code reviews do have significant influence 
towards the software system. 
 
2.2 Pull-Requests 

With the development of social coding 
communities and distributed version control system, 
Pull-Request becomes a more and more popular 
mechanism for lowering the barrier of contributors 
and ensuring the code quality of open source 
repositories [14]. PHAM et al [15] found that PRs 
make contributions become more and more casual. 
Many “freshmen” make contributions to open 
source projects using PRs. On one hand, it can help 
to accelerate the code refinement and iteration of 
software version. On the other hand, more PRs need 
more code reviewers to review them. Meanwhile, 
because developers can freely submit their code 
changes, it becomes more and more necessary to 
integrate cautiously. In GitHub, there is a 
well-developed pull-based model, each developer in 
the whole community can review the code and 
propose their suggestions and questions about the 
PRs. Thanks to this mechanism, the speed of code 
review process becomes faster, and also this 
mechanism can improve the quality of each PR 
[16]. 

In our work, we mainly focus on the PRs in 
GitHub community. Next, we will discuss about the 
Pull-Requests mechanism in GitHub. 

Almost all the projects in GitHub use Pull- 
Requests [14] and the number of PRs increases 
sharply [17] with the development of open source 
community. Therefore, it is important to deeply 
analyze the mechanism of PR. Firstly, developers 
clone the repository by forking in GitHub. Secondly, 
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change the source code and merge to the forked 
repository. Then, submit the PR to ask for the 
integration of the code change. Thereafter, PR 
reviewers test and discuss about the target PR. 
Finally, one of the core members of the repository 
decide whether to merge or close the PR. If the PR 
is closed, the developer can modify the PR and 
submit again. Otherwise, the code will be included 
in the main branch of the project, which can 
promote the development of the repository. 
 
2.3 Developer recommendation 

With the increase of developers and 
repositories in social coding communities, it is 
becoming more and more important to recommend 
developers to different tasks so that there can be a 
better development of open source projects [18]. 
2.3.1 Bug assignment 

There is a large number of bug reports and 
huge number of developers in popular open source 
projects (Ruby on Rails has more than 28K issues 
up to May 2017), which makes it a labor-intensive 
task to assign bugs to suitable fixers. Therefore, 
recommending fixers to bug reports is of significant 
importance. Many previous works used machine 
learning or information retrieval methods to triage 
bug reports or assign them to different developers 
[19–27]. JEONG et al [19] recommended bug fixers 
by building the tossing graph according to the bug 
fix history. KAGDI et al [26] matched bug reports 
with developers by extracting the technical terms of 
source code committed by contributors and bug 
report description. CANFORA et al [22] also used 
the information retrieval method, and index 
developers through the textual information of bug 
reports. ANVIK et al [28] used SVM to classify bug 
reports after filtering unfixed bug reports and 
non-active developers. SHOKRIPOUR et al [29] 
improved bug assignment method through using 
time based metadata and adding weights to 
technical terms. 

Even though bug assignment is not directly 
related to our work, it is also a kind of task 
recommendation in software development process. 
The method used in this field can also be used in 
code reviewer recommendation. 
2.3.2 Contributor recommendation 

There are some other works focusing on 
recommending contributors across different projects 
in the whole community. ZHANG et al [30] 
expanded users’ activities in social coding 

communities by matching users from both GitHub 
and StackOverflow. Then, recommend potential 
developers who may have interests in the target 
project. After that, ZHANG [31] also proposed a 
hybrid method by combing the weighted 
collaborative filtering algorithm and the text 
matching algorithm based on the collaborative 
network in GitHub. 

Although there are many works focusing on 
developer recommendation in social coding 
communities and many of which are about code 
reviewer recommendation. They still focus on the 
coarse-grained situations; however, our work 
proposed a recommendation model which can solve 
the fine-grained parts in code review. We not only 
judge whether a developer can participate a project 
and we also point out what kind of review may be 
the developer propose. 
2.3.3 Code reviewer recommendation 

For the problem that we focus on, JEONG et al 
[6] predicted the code reviewer using Bayesian 
Network. They trained the model using features 
generated from the code files. THONGTANUNAM 
et al [2, 32] found code reviewers by comparing the 
file path of the target source code file. 
BALACHANDRAN [5] found suitable reviewers 
by checking the change history of source code lines. 
RAHMAN et al [33] recommended code reviewers 
across different projects. ZANJANI et al [35] 
presented a method named cHRev based on 
historical contributions to automatically 
recommend best suited reviewers for a given review. 
XIA et al [36] proposed a hybrid approach that 
combines latent factor models and neighborhood 
methods to capture implicit relations of code 
reviewers. YU et al [7, 17, 34] proposed several 
methods for pull-based code reviewer 
recommendation based on the social comment 
network, which could reduce the human effort in 
reviewing code changes. 

Even though modern code review is becoming 
more and more popular, there are many related 
works focusing on recommending suitable 
developers to review code, they just used the 
information retrieval method or social network 
based method to find reviewers and few of them 
adopted machine learning algorithm in this field. In 
this paper, we propose a ML-based algorithm to 
recommend code reviewers to Pull-Requests in 
open source repositories. 
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3 Empirical study 
 

For this part, we will deeply analyze the 
review process of PRs, and find the influence of 
active reviewers on code review. Because there are 
so many PRs and code review is a time-consuming 
process which is based on the reviewers’ ability, it 
is unpractical and unnecessary for all the developers 
to review all the PRs. In order to deeply understand 
the relationship between developers and PRs, and 
make preparations for the code reviewer 
recommendation model, we propose two research 
questions. 

RQ1: What is the difference between active 
and non-active code reviewers? Do PRs need non- 
active reviewers indeed? 

RQ2: Why we say that code review is a time- 
consuming process? 

We do empirical studies on 16049 PRs and 
5075 reviewers before May 2017 in Ruby on Rails. 
 
3.1 RQ1 

In order to answer RQ1, we firstly analyze the 
reviewer number of each PR to see whether PR 
reviewing process needs many reviewers. The result 
is shown in Figure 3. 
 

 
Figure 3 Number of reviewers for Pull-Requests 

 
From Figure 3, we can see that, the number of 

reviewers for each PR is very small. And the PRs 
having 1 or 2 reviewers take up 53.7%. Moreover, 
the PRs having more than 10 reviewers only take up 
1.1%. That is to say, when reviewing a PR, it is not 
necessary to invite many reviewers. 

Now that there is no need to invite so many 
reviewers to review a PR, will active reviewers 

undertake all the reviewing work? We calculate the 
number of reviewed PRs for each developer in 
Ruby on Rails, and get the changing curve of the 
top 100 reviewers. The result is shown in Figure 4. 
 

 
Figure 4 Number of reviews for top 100 reviewers 

 
Figure 4 shows that for the top 100 active 

reviewers in Ruby on Rails, even though the 
number of reviewed PRs decreases sharply from 
4695 to 30, the non-active developers also 
undertake a large amount of reviewing work. That 
is to say, the difference between active and 
non-active developers is very big; however, 
non-active developers also play an important role. 

We take pixeltrix as an example, whose 
activeness ranks the 13th among all the code 
reviewers in Ruby on Rails. He has reviewed 657 
PRs till March 2017. From Figure 5, we see that 
pixeltrix also submitted reviews of high quality. 

From the above analysis, we conclude that 
although code review is led by some super active 
reviewers, other reviewers can also make a lot of 
contribution in the code reviewing process. 
Therefore, when a PR comes, we do not need to 
recommend those developers who are highly 
involved in the reviewing process. On the contrary, 
it is important to recommend other reviewers to 
undertake the code reviewing work in order to 
reduce the burden of those active reviewers and 
speed up the code reviewing process. 

For traditional code reviewer recommendation 
algorithms like the very popular IR-based method, 
there still is the problem for recommending 
experienced reviewers. We do an experiment to 
verify the performance of IR-based method when 
removing those active reviewers. The result can be 
seen in Figure 6 that the number of reviewers is 
greater than 4. 
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Figure 5 Reviews by pixeltrix 

 

 
Figure 6 Accuracy of IR-based recommendation 

algorithm 

 
From Figure 6, we can see that when 

recommending 1 to 10 reviewers, the accuracy 
value of the IR-based algorithm ranges from 26.6% 
to 51.3%. However, when we remove the most 

active reviewer called “rafaelfranca”, the accuracy 
drops a lot, ranging from 0.07% to 34.1%. 
Moreover, when we remove the top 2 reviewers 
called “rafaelfranca” and “senny”, the accuracy will 
also drop to some extent. That is to say, the 
IR-based recommendation algorithm is influenced 
by the activeness of reviewers and tends to 
recommend active developers to review PRs; 
however, these reviewers will participate in the 
reviewing process spontaneously. Therefore, a more 
effective recommendation algorithm that focuses on 
the non-active reviewers is still in demand. 
 
3.2 RQ2 

For RQ2, in order to verify that code review is 
a time-consuming process, we firstly calculate the 
time used for closing PRs, which is shown in  
Figure 7. 
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Figure 7 Time used for closing Pull-Requests 

 
Figure 7 shows that 40.4% PRs are closed for 

more than 10 d. Moreover, 28.9% PRs are closed 
for more than a month. That is to say, it is a long 
time for reviewers to finish reviewing the code 
change. However, there are two possible reasons for 
this situation. One is the start time that reviewing 
the PR is late and the other is that the reviewing 
process is time-consuming. Therefore, we calculate 
the standard deviation of the first three reviewers’ 
start time for each PR, which is shown in Figure 8. 
 

 
Figure 8 Standard deviation of first three reviewers’ start 

time 

 
From Figure 8, we can see that for 68.8% PRs, 

the standard deviation of the first three reviewers’ 
review time is less than one day, which means that 
the time gap between each reviewer’s participation 
is less than 1 d. Therefore, these PRs can attract 
reviewers to participate in a short time. However, 
there are still 32.2% PRs which cannot attract 
enough PRs in a short time. For them, it is 
important to apply code reviewer recommendation 
algorithm so that different reviewers can focus on 
them at the same time. For all the PRs, code 
reviewer recommendation can help to find suitable 

reviewers and shorten the time for reviewing 
theoretically. 
 
4 RevRec: Our approach 
 

In this section, we will firstly present some 
concepts about the relationship between developers 
and PRs, and then describe the two-layer 
recommendation model in detail. 
 
4.1 Concepts 

There are different relationships between each 
developer and PR in an open source repository. 

Participate: If the developer has commented to 
the PR, then we say that they have the participate 
relationship. 

Not participate: On the contrary, the 
relationship between developer and PR is not 
participate if he/she has not commented below the 
PR. 

Technically participate: If the developer has 
participated the PR by commenting below the 
change of code, then we treat their relationship as 
technically participate. 

Managerially participate: If the developer has 
participated the PR by just communicating with the 
developers or commenting to the PR below the 
description, then we treat the relationship as 
managerially participate. 

We can see that technically participate and 
managerially participate are subsets of participate 
relationship. 
 
4.2 Workflow of RevRec 

For our recommendation model, there are two 
layers which are used for checking the relationship 
between each developer and the target PR. The 
workflow can be seen in Figure 9. 
 

 
Figure 9 Workflow of RevRec 

 
Before doing the first step of classification, we 

pretreat the candidate set by filtering those 
developers without much experience of reviewing 
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code. Here we calculate developers’ experience 
according to their times of reviewing. If one has 
one or more times of code reviewing experiences, 
we consider that he/she has the ability to review the 
target PR. If not, we filter the developer from the 
candidate set. 

Firstly, as shown by ① in Figure 9, when the 
target PR comes, the first layer of our 
recommendation model checks whether each 
developer will participate in the PR. According to 
the relationship of each candidate and the target PR, 
we recommend the top 10 candidates as the 
reviewer of the target PR and treat them as having 
the participate relationship and for other candidates, 
we treat them as not participate candidates, and 
remove them from the result set. 

Secondly, as shown by ② in Figure 9, for the 
second layer of our recommendation model, it 
checks whether each recommended reviewer will 
technically participate or managerially participate 
in the target PR. We will recommend reviewers 
according to the rank result of the first layer. Those 
who are classified as technically participate 
reviewers will be recommended as technical 
reviewers. Meanwhile, those who are classified as 
managerially participate reviewers are treated as 
the recommendation result of managerial reviewers. 

From the workflow, we can see that RevRec 
consists of a heuristic recommendation algorithm 
and a classifier which belong to two layers 
respectively. The first layer is to get those 
developers who will review the PR and the other 
layer is to decide to what extent will the developer 
participate in the reviewing process, technically or 
managerially. 
 
4.3 First layer 

For the first layer of RevRec, we need to 
firstly generate a recommendation model for 
recommending suitable developers to review PRs. 
From YU’s work [7], we find that there have 
already been many kinds of code reviewer 
recommendation methods, including IR-based 
approach, path similarity based approach. In this 
section, we will describe different approaches in 
detail and come up with our new code reviewer 
recommendation algorithm. By combining different 
methods, we can obtain a hybrid approach. 
4.3.1 IR-based reviewer recommendation 

One popular bug assignment algorithm is the 

IR (information retrieval)-based method [20], 
which aims to matching the technical focus of 
developers and bug reports. This algorithm is also 
suitable for code reviewer recommendation 
according to YU’s work [7]. 

Firstly, we generate the technical terms of each 
PR in the project based on its title and description. 
By removing the stop words pre-defined before this 
process, we get the technical focus of each PR. All 
the technical terms can form into a corpus. 

Secondly, we generate the term vector of each 
PR according to TF-IDF algorithm (Eq. (1)), where 
each term can be calculated by this method 
according to different PRs.  
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where t represents a specific term; freq(t, pr) means 
the number of times that term t occurs in Pull- 
Requests pr; Tpr represents all the technical terms in 
pr. 

Thirdly, when a test PR comes, we calculate 
the relationship between each PR using the cosine 
similarity (Eq. (2)). The vector of each PR is 
formed by the technical terms in the whole corpus.  

||||
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After that, we summarize the relationship 

between each PR that a developer has reviewed 
before and the target PR. And we get the 
relationship between the developer and the target 
PR (Eq. (3)).  





dPRrp

rpprprd ),(similarity),(relation          (3) 

 
where d represents a developer; PRd means the PR 
set that the developer d has reviewed before. 

Therefore, when a target PR comes, we 
calculate the relationship between each developer 
and the target project. Then rank the values in 
descending order, and recommend the top several 
results. 
4.3.2 FL-based recommendation 

Another popular code reviewer 
recommendation algorithm is the FL (file location)- 
based method [2]. This algorithm is based on the 
assumption that similar modules of a software 
project are located in the same directory. Thus, 
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developers can review the source code located in 
the same directory that they have committed to. The 
process of the method is shown as below. 

Firstly, generate the related files that a 
developer commit to. When the target PR comes, 
the model firstly generates the PR’s related file 
directories, i.e., the file directories that the 
submitter commits to. These file directories are 
treated as the PR’s related module directories. 

Secondly, after selecting the candidate 
reviewers of the target PR, we calculate the 
relationship between this PR and each candidate. As 
we all know that each candidate has committed to 
or reviewed the same or similar files of this module 
before the submission of the target PR. Thus, we 
can obtain the PR and candidate relationship by 
summarizing the relationship of each similar file 
(Eq. (4)). Fpr means the related files that the PR 
changed, and similarity(f, f ′ ) represents the 
relationship between two files. 
 

  
  


d rp prPRrp Ff Ff

ffprd
: : :

),(similarity),(relation    (4) 

 
For the similarity of file directory, it uses the 

string comparison technique, which can be seen in 
Ref. [2]. 

Finally, after getting the relationship of each 
candidate and the target PR, we get the top n 
candidates as the recommendation result. 
4.3.3 Expertise based recommendation 

For IR-based algorithm, it focuses on 
generating the technical terms of each PR, which 
means that different PRs tend to focus on different 
technical parts of an open source project. For 
FL-based method, it is based on an assumption that 
different modules are located in different directories 
in a project. However, these two methods just focus 
on the coarse-grained information of PRs. Actually, 
PRs are related to code changes of projects, which 
means that the change of code is more related to the 
PR. For code reviewers, it is more important to 
understand the code changes deeply. That is to say, 
the code changes that developers focus on can 
directly measure their technical focus. Therefore, 
we propose a new algorithm which measures 
developers’ expertise towards a specific PR. 

Before presenting the recommendation method, 
we firstly talk about the forgetting curve, which is 
used to describe the decline of memory relation in 
time. It can be calculated by Eq. (5). 
 

s

t

stlityretrievabi


 e),(                      (5) 

where t means the time after creating the memory 
and s represents the memory strength. In our 
problem, when a reviewer reviews or submits a 
piece of code, we consider him/her as having this 
kind of memory. As time goes by, the developer’s 
expertise towards that piece of code becomes lower. 
And Eq. (5) is used to calculate the remaining 
expertise. 

When a developer reviews or submits PRs, we 
consider that he/she gains the capacity of the related 
technique. However, different PRs will cover 
different parts of related files, i.e., different lines of 
code. Meanwhile, the review or submit time of 
different PRs is different. Therefore, in order to 
calculate developers’ expertise towards different 
PRs’ related files, we need to take the lines of code 
and the correlation time into consideration. The 
expertise value for a developer to a source code file 
is shown in Eq. (6), in which RT(d, pr) means the 
time that the developer submits or reviews the PR. 
loc(pr, f) represents the lines of code that the PR’s 
related file f changed. We set the memory strength 
to 1, ignoring the differences between developers. 
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For the relationship between candidates and 
the target PR, the result is calculated by 
summarizing the expertise of the candidate towards 
each related file of the target PR. The equation is 
shown as below (Eq. (7)). 
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Because we take users’ review and submit time 

into consideration, the rank of users’ expertise is 
more reliable. If one is very active in the past, but 
less active nowadays, the value of his/her expertise 
will not be that big when considering about a PR 
that was submitted recently. Therefore, we can say 
that this method can solve the problem (active 
reviewers tend to be recommended by traditional 
code reviewer recommendation methods) that we 
mentioned in Section 3.1 to some extent. 
4.3.4 Hybrid recommendation approach 

Because the above three methods focus on 
different parts of PRs in open source projects. In 
order to get a better recommendation result, we 
synthesize the three recommendation algorithms 
mentioned above by combining their 
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recommendation results. The contribution of each 
result is calculated by its rank value (Eq. (8)). By 
summarizing different results of each method, we 
get the final score of each reviewer. After sorting 
the result in descending order, we get the top n 
results as the recommendation result of the hybrid 
approach. The equation of each reviewer’s score is 
shown in Eq. (9). 
 

),(/1),( prdrankprdscore                   (8) 
 

 ),(),( prdscoreprdscore IRhybrid  

),(),( exp prdscoreprdscore ertiserevfinder       (9) 
 

Through our validation, we find that the hybrid 
recommendation result outperforms the other three 
algorithms when recommending reviewers 
regardless of their activeness, which will be shown 
in Section 6.1. 
 
4.4 Second layer 

In this part, we will present the details for 
training the second layer of our recommendation 
model. The training process is shown in Figure 10. 
 

 
Figure 10 Training process of RevRec 

 
As Figure 10 shows, there are three steps for 

training a classifier for technically participate and 
managerially participate reviewers, which are 
shown as follows: 

Firstly, as shown by ①  in Figure 10, we 
generate all the developers and Pull-Requests in an 
open source repository, and check the relationship 
between each developer and Pull-Request 
(technically participate or managerially 
participate). 

Secondly, as shown by ②  in Figure 10, 
generate the features of each candidate, which 
represent his/her technological level. 

Thirdly, as shown by ③  in Figure 10, 
generate the relative features of candidates towards 
each PR, which represents candidates’ experience 
for technical or managerial review. 

Finally, as shown by ④ in Figure 10, put the 
training features and their related relationship into a 
SVM classifier to produce the second-layer 
classifier. 

For different open source projects, we need to 
generate different classifiers based on the above 
training process. 

For the second layer, we need to generate the 
absolute and relative features of developers in 
GitHub. Here in this part, we will describe each 
feature in detail. 

EXPERTISE: This feature is to measure the 
familiarity of each developer with the target PR. 
The detail information can be seen in Section 4.3.3. 

NTR: Number of technical reviews. This 
feature is to calculate the number of times that a 
developer technically reviews before the target PR 
created, which is used to measure the probability of 
the user to become a technically participate 
reviewer. 

NMR: Number of managerial reviews. This 
feature is opposite to NTR, which is used to 
describe the probability of the user to become a 
managerially participate reviewer. 

In general, these three features can 
differentiate different kinds of reviewers to some 
extent. The result of the classifier can be seen in 
Section 6.2. 

There is something that need to be mentioned. 
There are many reviewers who have no experience 
in technical review, therefore, we just treat them as 
managerial reviewers. For the training process, 
these developers will not be included in the model. 
When testing the model, those reviewers with no 
experience for technical review before the creation 
of the target PR will be automatically classified as 
managerial developers. We make tuples for each 
pull request like (pr, reviewer, review_type). A pr 
corresponds to multiple reviewers and a reviewer 
has two kinds of review_type: technically 
participate and managerially participate. 
 
5 Experiment setting 
 
5.1 Dataset 

In this section, we will present the dataset that 
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we use to train and test the RevRec model. We test 
our recommendation model on 2 popular GitHub 
projects, namely Ruby on Rails and Angular.js. 

We obtain all the PR information including PR 
description, PR reviewers, PR related commit 
messages and etc. Using the public API provided by 
GitHub, we get 18527 PRs for Ruby on Rails and 
7403 PRs for Angular.js from the creation of the 
project till March 16th, 2017. The dataset can be 
seen in Table 1. 

 
Table 1 Dataset in GitHub 

Project PR number 
Test PR 
number 

Reviewer 
number 

Ruby on Rails 18572 2284 3410 

Angular.js 7403 685 1508 

 
For the first layer of our recommendation 

model, we select the PRs created between February 
2016 and February 2017 which also have more than 
1 reviewer as the test PRs. For each test PR, we 
recommend reviewers among all the developers 
who have appeared before the creation of the target 
PR. 

For the second layer, we also use the same set 
of test PRs. Different from the first layer, we 
differentiate the technical reviewers and managerial 
reviewers regardless of those reviewers who focus 
on these two types of reviews. 
 
5.2 Experiment metrics 

For the validation of our experiments, 
precision and recall are not suitable to measure the 
model’s performance. For the false positives of our 
recommendation result (the recommended 
developers who have not reviewed the PR), they 
can still review the PR sometime in the future. Even 
though the PR is closed, it can still be reopened. 
Therefore, the precision and recall values will 
change according to the test time frame that we 
select. 

In order to validate the performance of our 
recommendation model, we measure the accuracy 
value. The equation is shown as below, 
 

||

)(
accuracy

||
1

s

si
PR
i

PR

PRhasTrues               (10) 

 
where PRs means the set of test PRs in the target 
project, and hasTrue is a function which checks 

whether a PR has got a true code reviewer. 
 
6 Results analysis and discussion 
 

In this section, we do contrast experiments 
about the accuracy of different code reviewer 
recommendation methods, and present the 
performance of the second layer classifier. 

For the first layer, we compare our expertise 
based method and the hybrid method with the 
pre-existing methods (IR-based method [20] and 
Revfinder [2]). The IR-based method is to find 
related code reviewers according to their technical 
focus, which is described in detail in Section 4.3.1. 
Even though it is used for bug assignment firstly, it 
is also suitable for code reviewer recommendation. 
The Revfinder method is to find code reviewers 
based on the similarity of file path where code 
change locates. For the detail of Revfinder, see 
Section 4.3.2. 

For the second layer, we present the accuracy 
value of our fine-grained code reviewer classifier. 
 
6.1 Recommendation results 

For this part, we firstly make comparison of 
different methods regardless of reviewers’ 
activeness to see which method performs the best 
when recommending 1–10 developers. The result is 
shown in Figure 11. 
 

 
Figure 11 Accuracy comparison of different methods 

considering all PRs of 2 projects 

 
From Figure 11, we can see that, when 

recommending 1–10 reviewers, the accuracy of the 
hybrid approach is the best compared with those 
three separate methods, which ranks from 32.9% to 
79.6%. That is to say, these three methods can make 
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up for each other and reach the best result. 
However, as we have said in Section 3.1, for 

active developers, they will attend PRs as many as 
possible. Therefore, there is no need to recommend 
these developers. 

Here we do an experiment to test the 
performance of each method when recommending 
reviewers regarding of their activeness. We remove 
the most active reviewers in the two projects 
respectively and calculate the accuracy 
(“rafaelfranca” and “senny” in Ruby on Rails, 
“petebacondarwin” and “mary-poppins” in 
Angular.js). The results of the two projects can be 
seen in Figures 12(a) and (b). 
 

 
Figure 12 Accuracy comparison after removing active 

reviewers: (a) Ruby on Rails; (b) Angular.js 

 
From these figures, we can see that the 

expertise based recommendation method performs 
the best when recommending less than 7 reviewers 
for Ruby on Rails and less than 4 reviewers for 
Angular.js. That is to say, comparing to expertise 
based method, IR-based and FL-based 
recommendation algorithms tend to recommend 
those active developers. After removing those 
active ones, the true recommendation results of IR- 

based and FL-based methods will be included in 
expertise based method. Therefore, the hybrid 
approach does not perform better than the expertise 
based method. 

However, when recommending more than 7 
reviewers for Ruby on Rails and more than 4 
reviewers for Angular.js, the different true results of 
IR-based and FL-based methods emerge, which 
makes hybrid method perform the best. 
 
6.2 Classification results 

In order to test the result of the second layer 
classifier, we select the top 10 reviewers of the 
hybrid method in the first layer. Then we classify 
the result in the second layer to see whether he/she 
will participate in the technical or managerial 
review. For each classifier of the two open source 
projects, the accuracy result can be seen in   
Figure 13. 

From the two figures, we can see that for Ruby 
on Rails project, the accuracy value is about 23.4% 
when recommending 10 reviewers, which means 
that 23.4% PRs find suitable technical or 
managerial reviewers. For Angular.js, the value is  

 

 
Figure 13 Accuracy for second layer: (a) Ruby on Rails; 

(b) Angular.js 



J. Cent. South Univ. (2018) 25: 1129–1143 

 

1141

 

35.8%. 
Even though the accuracy is not that good, we 

find that the accuracy values for the two projects 
are all bigger than 50% when we test the second 
layer using those truly participating reviewers, 
especially for Ruby on Rails, (the accuracy value is 
even bigger than 70%), which means that the 
second layer classifier does perform effectively. 

Therefore, in order to improve RevRec, we 
need to firstly improve the firstly layer so that there 
can be enough truly participating reviewers for the 
second layer to classify.  
 
Table 2 Accuracy of second layer for truly participating 

reviewer’s viewers  

Project Accuracy/% 

Ruby on rails 72.8 

Angular.js 58.6 

 
6.3 Threats to validity 

There are some threats to validity of our 
experiment which may affect the results. 

One is that the time limitation of the review 
process. For reviewers who have not reviewed the 
target PR will probably review sometime in the 
future. This may lead to a lower value of accuracy. 

Meanwhile, for technically participate 
reviewers, there may be some other reviewers who 
just managerially participate in the PR, but 
mention the code change in the comment. Therefore, 
the classification of these two categories still needs 
to be improved. 
 
7 Conclusion and future work 

This study aims to deeply analyze the pre- 
existing code reviewer recommendation methods 
and propose an effectively improved algorithm. 
After that, we develop a fine-grained multi-layer 
code reviewer recommendation model for open 
source projects based on traditional machine 
learning classifiers. We describe our model in detail 
and carry out contrast experiments on two popular 
projects in GitHub. The result shows that RevRec 
can effectively recommend those non-active 
reviewers. Meanwhile, RevRec can differentiate 
reviewers’ contribution towards each PR very well 
(technically participate or managerially 
participate), which means that for different 
requirements of PRs, our model can recommend 
different kinds of developers to solve the problem.  

However, there are still some limitations of our 
work. 

For expertise based recommendation method, 
we have not taken different developers’ memory 
strength into consideration. However, as we all 
know that different people have different memories 
in reality. What’s more, when calculating reviewers’ 
expertise, we just sum up the weighted lines of code 
without taking the same code pieces into 
consideration. Therefore, we need to deal with these 
problems and improve this method for future work. 

For the second-layer recommendation, we do 
not consider the recommendation results of the first 
layer, because we are afraid that the first layer result 
will affect the second layer. Besides, for feature 
selection, we just select possible features for the 
recommendation model heuristically, thus RevRec 
may not cover all the possible information for 
developers and PRs. Therefore, the 
recommendation result may be much better if we 
add or change some features of our model. Next, we 
will analyze the relevance of each feature towards 
the model, and select the most suitable ones. 

In our model, we generate two categories, the 
technically participate relation and the managerially 
participate relation. However, there are still many 
differences in each category. For testing and 
changing code, they are all treated as technically 
related processes. Managerial participation also has 
many types, including encouraging the PR author, 
asking questions about the PR, giving suggestions 
to the PR and so on. For the future work, we will 
refine the recommendation model for finer 
granularity classification. 
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中文导读 
 

RevREC：一个基于 Pull-Request 开发模型的双层审阅人推荐算法 
 
摘要：代码审查是减少代码缺陷和提高软件质量的重要过程。在像 GitHub 这样的社交编码社区，由

于每个人都可以提交 Pull-Request，所以代码审查扮演着比以往更重要的角色，而且这个过程非常耗

时。因此，寻找并推荐正确的评审人员来应对新兴的 Pull-Request 成为一项重要任务。然而，目前大

部分的研究主要集中在评估人员是否参与，并没有对人员参与的类型进行区分。在本文中，我们开发

了一个两层审阅人推荐模型，从技术和管理角度为 GitHub 项目中的 Pull-Request(PR)推荐审阅人。对

于第一层，我们根据混合推荐方法推荐合适的审阅人对目标 PR 进行审阅。对于第二层，在从第一层

获得推荐结果之后，我们指定被推荐的审阅人是技术还是管理上参与审阅过程。我们在 GitHub 的两

个热门项目上进行了实验，并使用 2016 年 2 月至 2017 年 2 月期间创建的 PR 来测试该方法。结果显

示，我们的推荐模型的第一层比以前的工作表现得更好，第二层可以有效地区分参与类型。 
 
关键词：Pull-Request；代码审阅人推荐；GitHub；开源社区 


