

J. Cent. South Univ. (2018) 25: 1129−1143
DOI: https://doi.org/10.1007/s11771-018-3812-x

RevRec: A two-layer reviewer recommendation algorithm in
pull-based development model

YANG Cheng(杨程), ZHANG Xun-hui(张迅晖), ZENG Ling-bin(曾令斌), FAN Qiang(范强),
WANG Tao(王涛), YU Yue(余跃), YIN Gang(尹刚), WANG Huai-min(王怀民)

National Laboratory for Parallel and Distributed Processing, College of Computer,

National University of Defense Technology, Changsha 410073, China

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: Code review is an important process to reduce code defects and improve software quality. In social coding
communities like GitHub, as everyone can submit Pull-Requests, code review plays a more important role than ever
before, and the process is quite time-consuming. Therefore, finding and recommending proper reviewers for the
emerging Pull-Requests becomes a vital task. However, most of the current studies mainly focus on recommending
reviewers by checking whether they will participate or not without differentiating the participation types. In this paper,
we develop a two-layer reviewer recommendation model to recommend reviewers for Pull-Requests (PRs) in GitHub
projects from the technical and managerial perspectives. For the first layer, we recommend suitable developers to
review the target PRs based on a hybrid recommendation method. For the second layer, after getting the
recommendation results from the first layer, we specify whether the target developer will technically or managerially
participate in the reviewing process. We conducted experiments on two popular projects in GitHub, and tested the
approach using PRs created between February 2016 and February 2017. The results show that the first layer of our
recommendation model performs better than the previous work, and the second layer can effectively differentiate the
types of participation.

Key words: Pull-Request; code reviewer recommendation; GitHub; open source community

Cite this article as: YANG Cheng, ZHANG Xun-hui, ZENG Ling-bin, FAN Qiang, WANG Tao, YU Yue, YIN Gang,
WANG Huai-min. RevRec: A two-layer reviewer recommendation algorithm in pull-based development model [J].
Journal of Central South University, 2018, 25(5): 1129–1143. DOI: https://doi.org/10.1007/s11771-018-3812-x.

1 Introduction

In the past 30 years, code review has been
regarded as the best practice of software
engineering both in industry and open source
communities [1], which can help to improve the
quality of source code. Traditionally, code
reviewers are third-party developers who can
identify the defects in source code before
integrating into the system [2], and the code review

process should be held in group meetings, which
will cost a lot of time. With the development of
social coding communities like GitHub, traditional
code review is gradually replaced by modern code
review [3]. When a code change is submitted to
developers for reviewing, the reviewers will
cooperate with each other to discuss and give
suggestions about the code.

If the change meets the need of the project and
is supported by many reviewers, it will be
integrated into the project’s source code. However,

Foundation item: Project(2016-YFB1000805) supported by the National Grand R&D Plan, China; Projects(61502512, 61432020,

61472430, 61532004) supported by the National Natural Science Foundation of China
Received date: 2017−07−25; Accepted date: 2017−12−27
Corresponding author: YANG Cheng, Doctoral Candidate; Tel: +86−17807312257; E-mail: delpiero710@126.com; ORCID: 0000-

0002-4782-1645

J. Cent. South Univ. (2018) 25: 1129–1143

1130

code review actually costs a lot of time, and the
reviewers invited are not always suitable for the job
[4]. Therefore, in order to reduce the time cost and
improve the effectiveness of code review, it is
necessary to recommend suitable reviewers to
different code changes.

With the development of distributed software
the pull-based model becomes more and more
popular because it can lower the barrier of
developers, which means that everyone can submit
Pull-Requests to the repository. Because the amount
of code changes increases, open source projects
need more developers to review the PRs and guard
the quality of the project. As there are so many
developers in open source repositories and the
number increases sharply, it becomes more and
more important to recommend suitable and
qualified reviewers to PRs.

However, there are also different kinds of
reviews for PRs. We take Ruby on Rails project in
GitHub as an example.

From Figures 1 and 2, we can see that some
reviewers will check whether there is any problem
in the code change, other people will just
managerially comment below the PR description.
These two kinds of reviewers form into the

reviewing group of PRs in GitHub, and promote the
development of open source projects cooperatively.
Therefore, it is basically important to tell different
kinds of reviewers apart so that we can find
reviewers with different responsibility and
recommend needed reviewers to different PRs.

Looking at the above factors, we find that for
modern code review especially pull-based models,
it is necessary to recommend developers to review
code changes. There have already been many
studies focusing on code reviewer recommendation.
THONGTANUNAM et al [2], BALACHANDRAN
[5], JEONG et al [6] and YU et al [7] focused on
recommending suitable developers for code
changes or PRs, either by calculating the similarity
of developers’ technical focus or generating features
from the modified source code. However, they just
focus on the precision, recall or accuracy values;
the reviewers that they recommend still need to be
analyzed. Meanwhile, to the best of our knowledge,
there are few studies focusing on recommending
fine-grained reviewers for code changes. Therefore,
in this paper, we will focus on analyzing the
problem of existing code reviewer recommendation
methods and improve them by promoting the
p e r f o r m a n c e a n d p r o p o s e a f i n e - g r a i n e d

Figure 1 Example of technical reviewer

Figure 2 Example of managerial reviewer

J. Cent. South Univ. (2018) 25: 1129–1143

1131

recommendation model.

The contributions of our work are as follows:
We statistically analyze the review process in Ruby
on Rails, and find that non-active reviewers are
important to the reviewing process. What’s more,
code reviewer recommendation is of great
importance to such time-consuming process. We
reproduce a popular and effective recommendation
algorithm (IR-based recommendation) and verify
that the existing recommendation approach is easy
to get into overfitting trouble, namely, excessive
reviewing tasks tend to be recommended to active
reviewers. We propose a hybrid reviewer
recommendation approach which combines the
expertise based method with existing IR and
revfinder methods. We validate our approach on
more than 36000 PRs in two popular GitHub
projects. The result suggests that the hybrid method
outperforms other separate methods regardless of
the reviewers’ activeness.

We propose a two-layer code reviewer
recommendation model by combining the hybrid
recommendation method and a SVM classifier
which subdivide the reviewers into technical and
managerial types. The results suggest the validation
of our approach in both layers.

The rest of this paper is organized as follows.
Section 2 reviews a few related studies. Section 3
describes the empirical study of PRs in Ruby on
Rails. Section 4 presents the recommendation
methods for the first layer. Section 5 describes the
experiment settings. Section 6 discusses the
experiment results. Section 7 elaborates the
conclusion and describe the future plans of the
study.

2 Related work

2.1 Modern code review

Code review is widely-agreed as the best
software engineering practice in both industrial and
open source contexts [1, 3], which helps to improve
the quality of source code and reduce the defects in
open source repositories. Traditionally, code
reviewing is a time-consuming and heavy-weight
process, which requires experts and a group
meeting most often [8]. In order to speed up the
process and improve the effectiveness at the same
time, there comes up many modern code review
methods. MCINTOSH et al [9] evaluated the

impact of code review coverage to the software
quality. After that, they extended their work and
studied the influence of different types of code
reviews through an empirical study [10]. BOSU
et al [11] and MORALES et al [12] also found that
code review did have impact on security
vulnerabilities and design quality respectively. In
addition to empirical studies, there are also many
studies focusing on the development of code
reviewing tools. For example, MUKADAM et al
[13] developed Gerrit for reviewing android based
source code.

From these studies, we can see that modern
code review is becoming a more and more
important process in software development, and
good code reviews do have significant influence
towards the software system.

2.2 Pull-Requests

With the development of social coding
communities and distributed version control system,
Pull-Request becomes a more and more popular
mechanism for lowering the barrier of contributors
and ensuring the code quality of open source
repositories [14]. PHAM et al [15] found that PRs
make contributions become more and more casual.
Many “freshmen” make contributions to open
source projects using PRs. On one hand, it can help
to accelerate the code refinement and iteration of
software version. On the other hand, more PRs need
more code reviewers to review them. Meanwhile,
because developers can freely submit their code
changes, it becomes more and more necessary to
integrate cautiously. In GitHub, there is a
well-developed pull-based model, each developer in
the whole community can review the code and
propose their suggestions and questions about the
PRs. Thanks to this mechanism, the speed of code
review process becomes faster, and also this
mechanism can improve the quality of each PR
[16].

In our work, we mainly focus on the PRs in
GitHub community. Next, we will discuss about the
Pull-Requests mechanism in GitHub.

Almost all the projects in GitHub use Pull-
Requests [14] and the number of PRs increases
sharply [17] with the development of open source
community. Therefore, it is important to deeply
analyze the mechanism of PR. Firstly, developers
clone the repository by forking in GitHub. Secondly,

J. Cent. South Univ. (2018) 25: 1129–1143

1132

change the source code and merge to the forked
repository. Then, submit the PR to ask for the
integration of the code change. Thereafter, PR
reviewers test and discuss about the target PR.
Finally, one of the core members of the repository
decide whether to merge or close the PR. If the PR
is closed, the developer can modify the PR and
submit again. Otherwise, the code will be included
in the main branch of the project, which can
promote the development of the repository.

2.3 Developer recommendation

With the increase of developers and
repositories in social coding communities, it is
becoming more and more important to recommend
developers to different tasks so that there can be a
better development of open source projects [18].
2.3.1 Bug assignment

There is a large number of bug reports and
huge number of developers in popular open source
projects (Ruby on Rails has more than 28K issues
up to May 2017), which makes it a labor-intensive
task to assign bugs to suitable fixers. Therefore,
recommending fixers to bug reports is of significant
importance. Many previous works used machine
learning or information retrieval methods to triage
bug reports or assign them to different developers
[19–27]. JEONG et al [19] recommended bug fixers
by building the tossing graph according to the bug
fix history. KAGDI et al [26] matched bug reports
with developers by extracting the technical terms of
source code committed by contributors and bug
report description. CANFORA et al [22] also used
the information retrieval method, and index
developers through the textual information of bug
reports. ANVIK et al [28] used SVM to classify bug
reports after filtering unfixed bug reports and
non-active developers. SHOKRIPOUR et al [29]
improved bug assignment method through using
time based metadata and adding weights to
technical terms.

Even though bug assignment is not directly
related to our work, it is also a kind of task
recommendation in software development process.
The method used in this field can also be used in
code reviewer recommendation.
2.3.2 Contributor recommendation

There are some other works focusing on
recommending contributors across different projects
in the whole community. ZHANG et al [30]
expanded users’ activities in social coding

communities by matching users from both GitHub
and StackOverflow. Then, recommend potential
developers who may have interests in the target
project. After that, ZHANG [31] also proposed a
hybrid method by combing the weighted
collaborative filtering algorithm and the text
matching algorithm based on the collaborative
network in GitHub.

Although there are many works focusing on
developer recommendation in social coding
communities and many of which are about code
reviewer recommendation. They still focus on the
coarse-grained situations; however, our work
proposed a recommendation model which can solve
the fine-grained parts in code review. We not only
judge whether a developer can participate a project
and we also point out what kind of review may be
the developer propose.
2.3.3 Code reviewer recommendation

For the problem that we focus on, JEONG et al
[6] predicted the code reviewer using Bayesian
Network. They trained the model using features
generated from the code files. THONGTANUNAM
et al [2, 32] found code reviewers by comparing the
file path of the target source code file.
BALACHANDRAN [5] found suitable reviewers
by checking the change history of source code lines.
RAHMAN et al [33] recommended code reviewers
across different projects. ZANJANI et al [35]
presented a method named cHRev based on
historical contributions to automatically
recommend best suited reviewers for a given review.
XIA et al [36] proposed a hybrid approach that
combines latent factor models and neighborhood
methods to capture implicit relations of code
reviewers. YU et al [7, 17, 34] proposed several
methods for pull-based code reviewer
recommendation based on the social comment
network, which could reduce the human effort in
reviewing code changes.

Even though modern code review is becoming
more and more popular, there are many related
works focusing on recommending suitable
developers to review code, they just used the
information retrieval method or social network
based method to find reviewers and few of them
adopted machine learning algorithm in this field. In
this paper, we propose a ML-based algorithm to
recommend code reviewers to Pull-Requests in
open source repositories.

J. Cent. South Univ. (2018) 25: 1129–1143

1133

3 Empirical study

For this part, we will deeply analyze the
review process of PRs, and find the influence of
active reviewers on code review. Because there are
so many PRs and code review is a time-consuming
process which is based on the reviewers’ ability, it
is unpractical and unnecessary for all the developers
to review all the PRs. In order to deeply understand
the relationship between developers and PRs, and
make preparations for the code reviewer
recommendation model, we propose two research
questions.

RQ1: What is the difference between active
and non-active code reviewers? Do PRs need non-
active reviewers indeed?

RQ2: Why we say that code review is a time-
consuming process?

We do empirical studies on 16049 PRs and
5075 reviewers before May 2017 in Ruby on Rails.

3.1 RQ1

In order to answer RQ1, we firstly analyze the
reviewer number of each PR to see whether PR
reviewing process needs many reviewers. The result
is shown in Figure 3.

Figure 3 Number of reviewers for Pull-Requests

From Figure 3, we can see that, the number of

reviewers for each PR is very small. And the PRs
having 1 or 2 reviewers take up 53.7%. Moreover,
the PRs having more than 10 reviewers only take up
1.1%. That is to say, when reviewing a PR, it is not
necessary to invite many reviewers.

Now that there is no need to invite so many
reviewers to review a PR, will active reviewers

undertake all the reviewing work? We calculate the
number of reviewed PRs for each developer in
Ruby on Rails, and get the changing curve of the
top 100 reviewers. The result is shown in Figure 4.

Figure 4 Number of reviews for top 100 reviewers

Figure 4 shows that for the top 100 active

reviewers in Ruby on Rails, even though the
number of reviewed PRs decreases sharply from
4695 to 30, the non-active developers also
undertake a large amount of reviewing work. That
is to say, the difference between active and
non-active developers is very big; however,
non-active developers also play an important role.

We take pixeltrix as an example, whose
activeness ranks the 13th among all the code
reviewers in Ruby on Rails. He has reviewed 657
PRs till March 2017. From Figure 5, we see that
pixeltrix also submitted reviews of high quality.

From the above analysis, we conclude that
although code review is led by some super active
reviewers, other reviewers can also make a lot of
contribution in the code reviewing process.
Therefore, when a PR comes, we do not need to
recommend those developers who are highly
involved in the reviewing process. On the contrary,
it is important to recommend other reviewers to
undertake the code reviewing work in order to
reduce the burden of those active reviewers and
speed up the code reviewing process.

For traditional code reviewer recommendation
algorithms like the very popular IR-based method,
there still is the problem for recommending
experienced reviewers. We do an experiment to
verify the performance of IR-based method when
removing those active reviewers. The result can be
seen in Figure 6 that the number of reviewers is
greater than 4.

J. Cent. South Univ. (2018) 25: 1129–1143

1134

Figure 5 Reviews by pixeltrix

Figure 6 Accuracy of IR-based recommendation

algorithm

From Figure 6, we can see that when

recommending 1 to 10 reviewers, the accuracy
value of the IR-based algorithm ranges from 26.6%
to 51.3%. However, when we remove the most

active reviewer called “rafaelfranca”, the accuracy
drops a lot, ranging from 0.07% to 34.1%.
Moreover, when we remove the top 2 reviewers
called “rafaelfranca” and “senny”, the accuracy will
also drop to some extent. That is to say, the
IR-based recommendation algorithm is influenced
by the activeness of reviewers and tends to
recommend active developers to review PRs;
however, these reviewers will participate in the
reviewing process spontaneously. Therefore, a more
effective recommendation algorithm that focuses on
the non-active reviewers is still in demand.

3.2 RQ2

For RQ2, in order to verify that code review is
a time-consuming process, we firstly calculate the
time used for closing PRs, which is shown in
Figure 7.

J. Cent. South Univ. (2018) 25: 1129–1143

1135

Figure 7 Time used for closing Pull-Requests

Figure 7 shows that 40.4% PRs are closed for

more than 10 d. Moreover, 28.9% PRs are closed
for more than a month. That is to say, it is a long
time for reviewers to finish reviewing the code
change. However, there are two possible reasons for
this situation. One is the start time that reviewing
the PR is late and the other is that the reviewing
process is time-consuming. Therefore, we calculate
the standard deviation of the first three reviewers’
start time for each PR, which is shown in Figure 8.

Figure 8 Standard deviation of first three reviewers’ start

time

From Figure 8, we can see that for 68.8% PRs,

the standard deviation of the first three reviewers’
review time is less than one day, which means that
the time gap between each reviewer’s participation
is less than 1 d. Therefore, these PRs can attract
reviewers to participate in a short time. However,
there are still 32.2% PRs which cannot attract
enough PRs in a short time. For them, it is
important to apply code reviewer recommendation
algorithm so that different reviewers can focus on
them at the same time. For all the PRs, code
reviewer recommendation can help to find suitable

reviewers and shorten the time for reviewing
theoretically.

4 RevRec: Our approach

In this section, we will firstly present some
concepts about the relationship between developers
and PRs, and then describe the two-layer
recommendation model in detail.

4.1 Concepts

There are different relationships between each
developer and PR in an open source repository.

Participate: If the developer has commented to
the PR, then we say that they have the participate
relationship.

Not participate: On the contrary, the
relationship between developer and PR is not
participate if he/she has not commented below the
PR.

Technically participate: If the developer has
participated the PR by commenting below the
change of code, then we treat their relationship as
technically participate.

Managerially participate: If the developer has
participated the PR by just communicating with the
developers or commenting to the PR below the
description, then we treat the relationship as
managerially participate.

We can see that technically participate and
managerially participate are subsets of participate
relationship.

4.2 Workflow of RevRec

For our recommendation model, there are two
layers which are used for checking the relationship
between each developer and the target PR. The
workflow can be seen in Figure 9.

Figure 9 Workflow of RevRec

Before doing the first step of classification, we

pretreat the candidate set by filtering those
developers without much experience of reviewing

J. Cent. South Univ. (2018) 25: 1129–1143

1136

code. Here we calculate developers’ experience
according to their times of reviewing. If one has
one or more times of code reviewing experiences,
we consider that he/she has the ability to review the
target PR. If not, we filter the developer from the
candidate set.

Firstly, as shown by ① in Figure 9, when the
target PR comes, the first layer of our
recommendation model checks whether each
developer will participate in the PR. According to
the relationship of each candidate and the target PR,
we recommend the top 10 candidates as the
reviewer of the target PR and treat them as having
the participate relationship and for other candidates,
we treat them as not participate candidates, and
remove them from the result set.

Secondly, as shown by ② in Figure 9, for the
second layer of our recommendation model, it
checks whether each recommended reviewer will
technically participate or managerially participate
in the target PR. We will recommend reviewers
according to the rank result of the first layer. Those
who are classified as technically participate
reviewers will be recommended as technical
reviewers. Meanwhile, those who are classified as
managerially participate reviewers are treated as
the recommendation result of managerial reviewers.

From the workflow, we can see that RevRec
consists of a heuristic recommendation algorithm
and a classifier which belong to two layers
respectively. The first layer is to get those
developers who will review the PR and the other
layer is to decide to what extent will the developer
participate in the reviewing process, technically or
managerially.

4.3 First layer

For the first layer of RevRec, we need to
firstly generate a recommendation model for
recommending suitable developers to review PRs.
From YU’s work [7], we find that there have
already been many kinds of code reviewer
recommendation methods, including IR-based
approach, path similarity based approach. In this
section, we will describe different approaches in
detail and come up with our new code reviewer
recommendation algorithm. By combining different
methods, we can obtain a hybrid approach.
4.3.1 IR-based reviewer recommendation

One popular bug assignment algorithm is the

IR (information retrieval)-based method [20],
which aims to matching the technical focus of
developers and bug reports. This algorithm is also
suitable for code reviewer recommendation
according to YU’s work [7].

Firstly, we generate the technical terms of each
PR in the project based on its title and description.
By removing the stop words pre-defined before this
process, we get the technical focus of each PR. All
the technical terms can form into a corpus.

Secondly, we generate the term vector of each
PR according to TF-IDF algorithm (Eq. (1)), where
each term can be calculated by this method
according to different PRs.





 ),(

),(
),(

prtfreq

prtfreq
prtIDFTF

prTt




















 



 

1),(

),(
lg

rptfreq

prtfreq

PRrp

TtPRrp rp (1)

where t represents a specific term; freq(t, pr) means
the number of times that term t occurs in Pull-
Requests pr; Tpr represents all the technical terms in
pr.

Thirdly, when a test PR comes, we calculate
the relationship between each PR using the cosine
similarity (Eq. (2)). The vector of each PR is
formed by the technical terms in the whole corpus.

||||
),(similarity

rppr

rppr

vv

vv
rppr




 (2)

After that, we summarize the relationship

between each PR that a developer has reviewed
before and the target PR. And we get the
relationship between the developer and the target
PR (Eq. (3)).





dPRrp

rpprprd),(similarity),(relation (3)

where d represents a developer; PRd means the PR
set that the developer d has reviewed before.

Therefore, when a target PR comes, we
calculate the relationship between each developer
and the target project. Then rank the values in
descending order, and recommend the top several
results.
4.3.2 FL-based recommendation

Another popular code reviewer
recommendation algorithm is the FL (file location)-
based method [2]. This algorithm is based on the
assumption that similar modules of a software
project are located in the same directory. Thus,

J. Cent. South Univ. (2018) 25: 1129–1143

1137

developers can review the source code located in
the same directory that they have committed to. The
process of the method is shown as below.

Firstly, generate the related files that a
developer commit to. When the target PR comes,
the model firstly generates the PR’s related file
directories, i.e., the file directories that the
submitter commits to. These file directories are
treated as the PR’s related module directories.

Secondly, after selecting the candidate
reviewers of the target PR, we calculate the
relationship between this PR and each candidate. As
we all know that each candidate has committed to
or reviewed the same or similar files of this module
before the submission of the target PR. Thus, we
can obtain the PR and candidate relationship by
summarizing the relationship of each similar file
(Eq. (4)). Fpr means the related files that the PR
changed, and similarity(f, f ′) represents the
relationship between two files.

  
  


d rp prPRrp Ff Ff

ffprd
: : :

),(similarity),(relation (4)

For the similarity of file directory, it uses the

string comparison technique, which can be seen in
Ref. [2].

Finally, after getting the relationship of each
candidate and the target PR, we get the top n
candidates as the recommendation result.
4.3.3 Expertise based recommendation

For IR-based algorithm, it focuses on
generating the technical terms of each PR, which
means that different PRs tend to focus on different
technical parts of an open source project. For
FL-based method, it is based on an assumption that
different modules are located in different directories
in a project. However, these two methods just focus
on the coarse-grained information of PRs. Actually,
PRs are related to code changes of projects, which
means that the change of code is more related to the
PR. For code reviewers, it is more important to
understand the code changes deeply. That is to say,
the code changes that developers focus on can
directly measure their technical focus. Therefore,
we propose a new algorithm which measures
developers’ expertise towards a specific PR.

Before presenting the recommendation method,
we firstly talk about the forgetting curve, which is
used to describe the decline of memory relation in
time. It can be calculated by Eq. (5).

s

t

stlityretrievabi


 e),((5)

where t means the time after creating the memory
and s represents the memory strength. In our
problem, when a reviewer reviews or submits a
piece of code, we consider him/her as having this
kind of memory. As time goes by, the developer’s
expertise towards that piece of code becomes lower.
And Eq. (5) is used to calculate the remaining
expertise.

When a developer reviews or submits PRs, we
consider that he/she gains the capacity of the related
technique. However, different PRs will cover
different parts of related files, i.e., different lines of
code. Meanwhile, the review or submit time of
different PRs is different. Therefore, in order to
calculate developers’ expertise towards different
PRs’ related files, we need to take the lines of code
and the correlation time into consideration. The
expertise value for a developer to a source code file
is shown in Eq. (6), in which RT(d, pr) means the
time that the developer submits or reviews the PR.
loc(pr, f) represents the lines of code that the PR’s
related file f changed. We set the memory strength
to 1, ignoring the differences between developers.

 
}{:

)1)},,((max{(),(
fd PRPRpr

prdkTbilityretrievalifdE


)),(fprloc (6)

For the relationship between candidates and
the target PR, the result is calculated by
summarizing the expertise of the candidate towards
each related file of the target PR. The equation is
shown as below (Eq. (7)).


prFf

fdEprd
:

),(),(relation (7)

Because we take users’ review and submit time

into consideration, the rank of users’ expertise is
more reliable. If one is very active in the past, but
less active nowadays, the value of his/her expertise
will not be that big when considering about a PR
that was submitted recently. Therefore, we can say
that this method can solve the problem (active
reviewers tend to be recommended by traditional
code reviewer recommendation methods) that we
mentioned in Section 3.1 to some extent.
4.3.4 Hybrid recommendation approach

Because the above three methods focus on
different parts of PRs in open source projects. In
order to get a better recommendation result, we
synthesize the three recommendation algorithms
mentioned above by combining their

J. Cent. South Univ. (2018) 25: 1129–1143

1138

recommendation results. The contribution of each
result is calculated by its rank value (Eq. (8)). By
summarizing different results of each method, we
get the final score of each reviewer. After sorting
the result in descending order, we get the top n
results as the recommendation result of the hybrid
approach. The equation of each reviewer’s score is
shown in Eq. (9).

),(/1),(prdrankprdscore  (8)

),(),(prdscoreprdscore IRhybrid

),(),(exp prdscoreprdscore ertiserevfinder  (9)

Through our validation, we find that the hybrid
recommendation result outperforms the other three
algorithms when recommending reviewers
regardless of their activeness, which will be shown
in Section 6.1.

4.4 Second layer

In this part, we will present the details for
training the second layer of our recommendation
model. The training process is shown in Figure 10.

Figure 10 Training process of RevRec

As Figure 10 shows, there are three steps for

training a classifier for technically participate and
managerially participate reviewers, which are
shown as follows:

Firstly, as shown by ① in Figure 10, we
generate all the developers and Pull-Requests in an
open source repository, and check the relationship
between each developer and Pull-Request
(technically participate or managerially
participate).

Secondly, as shown by ② in Figure 10,
generate the features of each candidate, which
represent his/her technological level.

Thirdly, as shown by ③ in Figure 10,
generate the relative features of candidates towards
each PR, which represents candidates’ experience
for technical or managerial review.

Finally, as shown by ④ in Figure 10, put the
training features and their related relationship into a
SVM classifier to produce the second-layer
classifier.

For different open source projects, we need to
generate different classifiers based on the above
training process.

For the second layer, we need to generate the
absolute and relative features of developers in
GitHub. Here in this part, we will describe each
feature in detail.

EXPERTISE: This feature is to measure the
familiarity of each developer with the target PR.
The detail information can be seen in Section 4.3.3.

NTR: Number of technical reviews. This
feature is to calculate the number of times that a
developer technically reviews before the target PR
created, which is used to measure the probability of
the user to become a technically participate
reviewer.

NMR: Number of managerial reviews. This
feature is opposite to NTR, which is used to
describe the probability of the user to become a
managerially participate reviewer.

In general, these three features can
differentiate different kinds of reviewers to some
extent. The result of the classifier can be seen in
Section 6.2.

There is something that need to be mentioned.
There are many reviewers who have no experience
in technical review, therefore, we just treat them as
managerial reviewers. For the training process,
these developers will not be included in the model.
When testing the model, those reviewers with no
experience for technical review before the creation
of the target PR will be automatically classified as
managerial developers. We make tuples for each
pull request like (pr, reviewer, review_type). A pr
corresponds to multiple reviewers and a reviewer
has two kinds of review_type: technically
participate and managerially participate.

5 Experiment setting

5.1 Dataset

In this section, we will present the dataset that

J. Cent. South Univ. (2018) 25: 1129–1143

1139

we use to train and test the RevRec model. We test
our recommendation model on 2 popular GitHub
projects, namely Ruby on Rails and Angular.js.

We obtain all the PR information including PR
description, PR reviewers, PR related commit
messages and etc. Using the public API provided by
GitHub, we get 18527 PRs for Ruby on Rails and
7403 PRs for Angular.js from the creation of the
project till March 16th, 2017. The dataset can be
seen in Table 1.

Table 1 Dataset in GitHub

Project PR number
Test PR
number

Reviewer
number

Ruby on Rails 18572 2284 3410

Angular.js 7403 685 1508

For the first layer of our recommendation

model, we select the PRs created between February
2016 and February 2017 which also have more than
1 reviewer as the test PRs. For each test PR, we
recommend reviewers among all the developers
who have appeared before the creation of the target
PR.

For the second layer, we also use the same set
of test PRs. Different from the first layer, we
differentiate the technical reviewers and managerial
reviewers regardless of those reviewers who focus
on these two types of reviews.

5.2 Experiment metrics

For the validation of our experiments,
precision and recall are not suitable to measure the
model’s performance. For the false positives of our
recommendation result (the recommended
developers who have not reviewed the PR), they
can still review the PR sometime in the future. Even
though the PR is closed, it can still be reopened.
Therefore, the precision and recall values will
change according to the test time frame that we
select.

In order to validate the performance of our
recommendation model, we measure the accuracy
value. The equation is shown as below,

||

)(
accuracy

||
1

s

si
PR
i

PR

PRhasTrues  (10)

where PRs means the set of test PRs in the target
project, and hasTrue is a function which checks

whether a PR has got a true code reviewer.

6 Results analysis and discussion

In this section, we do contrast experiments
about the accuracy of different code reviewer
recommendation methods, and present the
performance of the second layer classifier.

For the first layer, we compare our expertise
based method and the hybrid method with the
pre-existing methods (IR-based method [20] and
Revfinder [2]). The IR-based method is to find
related code reviewers according to their technical
focus, which is described in detail in Section 4.3.1.
Even though it is used for bug assignment firstly, it
is also suitable for code reviewer recommendation.
The Revfinder method is to find code reviewers
based on the similarity of file path where code
change locates. For the detail of Revfinder, see
Section 4.3.2.

For the second layer, we present the accuracy
value of our fine-grained code reviewer classifier.

6.1 Recommendation results

For this part, we firstly make comparison of
different methods regardless of reviewers’
activeness to see which method performs the best
when recommending 1–10 developers. The result is
shown in Figure 11.

Figure 11 Accuracy comparison of different methods

considering all PRs of 2 projects

From Figure 11, we can see that, when

recommending 1–10 reviewers, the accuracy of the
hybrid approach is the best compared with those
three separate methods, which ranks from 32.9% to
79.6%. That is to say, these three methods can make

J. Cent. South Univ. (2018) 25: 1129–1143

1140

up for each other and reach the best result.
However, as we have said in Section 3.1, for

active developers, they will attend PRs as many as
possible. Therefore, there is no need to recommend
these developers.

Here we do an experiment to test the
performance of each method when recommending
reviewers regarding of their activeness. We remove
the most active reviewers in the two projects
respectively and calculate the accuracy
(“rafaelfranca” and “senny” in Ruby on Rails,
“petebacondarwin” and “mary-poppins” in
Angular.js). The results of the two projects can be
seen in Figures 12(a) and (b).

Figure 12 Accuracy comparison after removing active

reviewers: (a) Ruby on Rails; (b) Angular.js

From these figures, we can see that the

expertise based recommendation method performs
the best when recommending less than 7 reviewers
for Ruby on Rails and less than 4 reviewers for
Angular.js. That is to say, comparing to expertise
based method, IR-based and FL-based
recommendation algorithms tend to recommend
those active developers. After removing those
active ones, the true recommendation results of IR-

based and FL-based methods will be included in
expertise based method. Therefore, the hybrid
approach does not perform better than the expertise
based method.

However, when recommending more than 7
reviewers for Ruby on Rails and more than 4
reviewers for Angular.js, the different true results of
IR-based and FL-based methods emerge, which
makes hybrid method perform the best.

6.2 Classification results

In order to test the result of the second layer
classifier, we select the top 10 reviewers of the
hybrid method in the first layer. Then we classify
the result in the second layer to see whether he/she
will participate in the technical or managerial
review. For each classifier of the two open source
projects, the accuracy result can be seen in
Figure 13.

From the two figures, we can see that for Ruby
on Rails project, the accuracy value is about 23.4%
when recommending 10 reviewers, which means
that 23.4% PRs find suitable technical or
managerial reviewers. For Angular.js, the value is

Figure 13 Accuracy for second layer: (a) Ruby on Rails;

(b) Angular.js

J. Cent. South Univ. (2018) 25: 1129–1143

1141

35.8%.
Even though the accuracy is not that good, we

find that the accuracy values for the two projects
are all bigger than 50% when we test the second
layer using those truly participating reviewers,
especially for Ruby on Rails, (the accuracy value is
even bigger than 70%), which means that the
second layer classifier does perform effectively.

Therefore, in order to improve RevRec, we
need to firstly improve the firstly layer so that there
can be enough truly participating reviewers for the
second layer to classify.

Table 2 Accuracy of second layer for truly participating

reviewer’s viewers

Project Accuracy/%

Ruby on rails 72.8

Angular.js 58.6

6.3 Threats to validity

There are some threats to validity of our
experiment which may affect the results.

One is that the time limitation of the review
process. For reviewers who have not reviewed the
target PR will probably review sometime in the
future. This may lead to a lower value of accuracy.

Meanwhile, for technically participate
reviewers, there may be some other reviewers who
just managerially participate in the PR, but
mention the code change in the comment. Therefore,
the classification of these two categories still needs
to be improved.

7 Conclusion and future work

This study aims to deeply analyze the pre-
existing code reviewer recommendation methods
and propose an effectively improved algorithm.
After that, we develop a fine-grained multi-layer
code reviewer recommendation model for open
source projects based on traditional machine
learning classifiers. We describe our model in detail
and carry out contrast experiments on two popular
projects in GitHub. The result shows that RevRec
can effectively recommend those non-active
reviewers. Meanwhile, RevRec can differentiate
reviewers’ contribution towards each PR very well
(technically participate or managerially
participate), which means that for different
requirements of PRs, our model can recommend
different kinds of developers to solve the problem.

However, there are still some limitations of our
work.

For expertise based recommendation method,
we have not taken different developers’ memory
strength into consideration. However, as we all
know that different people have different memories
in reality. What’s more, when calculating reviewers’
expertise, we just sum up the weighted lines of code
without taking the same code pieces into
consideration. Therefore, we need to deal with these
problems and improve this method for future work.

For the second-layer recommendation, we do
not consider the recommendation results of the first
layer, because we are afraid that the first layer result
will affect the second layer. Besides, for feature
selection, we just select possible features for the
recommendation model heuristically, thus RevRec
may not cover all the possible information for
developers and PRs. Therefore, the
recommendation result may be much better if we
add or change some features of our model. Next, we
will analyze the relevance of each feature towards
the model, and select the most suitable ones.

In our model, we generate two categories, the
technically participate relation and the managerially
participate relation. However, there are still many
differences in each category. For testing and
changing code, they are all treated as technically
related processes. Managerial participation also has
many types, including encouraging the PR author,
asking questions about the PR, giving suggestions
to the PR and so on. For the future work, we will
refine the recommendation model for finer
granularity classification.

References

[1] BOEHM B, ROMBACH H D, ZELKOWITZ M V. Software

defect reduction top 10 list [M]// Foundations of Empirical

Software Engineering: the Legacy of Victor R. Basili,

Springer, Verlag New York, Inc., 2005.

[2] THONGTANUNAM P, TANTITHAMTHAVORN C, KULA

R G, YOSHIDA V, IIDA H, MATSUMOTO K I. Who should

review my code? A file location-based code-reviewer

recommendation approach for modern code review [C]//

Software Analysis, Evolution and Reengineering (SANER),

2015 IEEE 22nd International Conference on. IEEE, 2015:

141–150.

[3] KOLLANUS S, KOSKINEN J. Survey of software

inspection research [J]. The Open Software Engineering

Journal, 2009, 3(1): 15–34.

[4] RIGBY P C, STOREY M A. Understanding broadcast based

J. Cent. South Univ. (2018) 25: 1129–1143

1142

peer review on open source software projects [C]//

Proceedings of the 33rd International Conference on

Software Engineering. ACM, 2011: 541–550.

[5] BALACHANDRAN V. Reducing human effort and

improving quality in peer code reviews using automatic

static analysis and reviewer recommendation [C]// Software

Engineering (ICSE), 2013 35th International Conference on.

IEEE, 2013: 931–940.

[6] JEONG G, KIM S, ZIMMERMANN T, YI K. Improving

code review by predicting reviewers and acceptance of

patches [M]// Research on Software Analysis for Error-free

Computing Center Tech-Memo (ROSAEC MEMO

2009-006), 2009: 1–18.

[7] YU Y, WANG H, YIN G, WANG T. Reviewer

recommendation for pull-requests in GitHub: What can we

learn from code review and bug assignment? [J]. Information

and Software Technology, 2016, 74: 204–218.

[8] BROY M, DENERT E. Pioneers and their contributions to

software engineering [M]. Berlin Heidelberg, Springer: 2001.

[9] MCLNTOSH S, KAMEI Y, ADAMS B, HASSAN A E. The

impact of code review coverage and code review

participation on software quality: A case study of the qt, vtk,

and itk projects [C]// Proceedings of the 11th Working

Conference on Mining Software Repositories. ACM, 2014:

192–201.

[10] MCINTOSH S, KAMEI Y, ADAMS B, HASSAN A E. An

empirical study of the impact of modern code review

practices on software quality [J]. Empirical Software

Engineering, 2016, 21(5): 2146–2189.

[11] BOSU A, CARVER J C. Peer code review to prevent

security vulnerabilities: An empirical evaluation [C]//

Software Security and Reliability-Companion (SERE-C),

2013 IEEE 7th International Conference on. IEEE, 2013:

229–230.

[12] MORALES R, MCLNTOSH S, KHOMH F. Do code review

practices impact design quality? a case study of the qt, vtk,

and itk projects [C]// Software Analysis, Evolution and

Reengineering (SANER), 2015 IEEE 22nd International

Conference on. IEEE, 2015: 171–180.

[13] MUKADAM M, BIRD C, RIGBY P C. Gerrit software code

review data from android [C]// Mining Software Repositories

(MSR), 2013 10th IEEE Working Conference on. IEEE,

2013: 45–48.

[14] GOUSIOS G, ZAIDMAN A, STOREY M A, van DEURSEN

A. Work practices and challenges in pull-based development:

the integrator's perspective [C]// Proceedings of the 37th

International Conference on Software Engineering: Volume 1.

IEEE, 2015: 358–368.

[15] PHAM R, SINGER L, LISKIN O, FIGUEIRAFILHO F,

SCHNEIDER K. Creating a shared understanding of testing

culture on a social coding site [C]// Software Engineering

(ICSE), 2013 35th International Conference on. IEEE, 2013:

112–121.

[16] ZHU J, ZHOU M, MOCKUS A. Effectiveness of code

contribution: From patch-based to pull-request-based tools

[C]// Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering. ACM, 2016: 871–882.

[17] YU Y, WANG H, YIN G, LING C X. Reviewer

recommender of pull-requests in GitHub [C]// Software

Maintenance and Evolution (ICSME), 2014 IEEE

International Conference on. IEEE, 2014: 609–612.

[18] YANG C, ZHANG X, ZENG L, FAN Q, YIN G, WANG H.

An empirical study of reviewer recommendation in

pull-based development model [C]// Proceedings of the 9th

Asia-Pacific Symposium on Internetware. ACM, 2017: 14.

[19] JEONG G, KIM S, ZIMMERMANN T. Improving bug triage

with bug tossing graphs [C]// Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering. ACM, 2009: 111–120.

[20] KAGDI H, POSHYVANYK D. Who can help me with this

change request? [C]// Program Comprehension, 2009.

ICPC'09. IEEE 17th International Conference on. IEEE,

2009: 273–277.

[21] BHATTACHARYA P, NEAMTIU I. Fine-grained

incremental learning and multi-feature tossing graphs to

improve bug triaging [C]// Software Maintenance (ICSM),

2010 IEEE International Conference on. IEEE, 2010: 1–10.

[22] CANFORA G, CERULO L. Supporting change request

assignment in open source development [C]// Proceedings of

the 2006 ACM Symposium on Applied Computing. ACM,

2006: 1767–1772.

[23] LINARES-VÁSQUEZ M, HOSSEN K, DANG H, KAGDI

H, GETHERS M, POSHYVANYK D. Triaging incoming

change requests: Bug or commit history, or code authorship?

[C]// Software Maintenance (ICSM), 2012 28th IEEE

International Conference on. IEEE, 2012: 451–460.

[24] JONSSON L, BORG M, BROMAN D, SANDAHL K,

ELDH S, RUNESON P. Automated bug assignment:

Ensemble-based machine learning in large scale industrial

contexts [J]. Empirical Software Engineering, 2016, 21(4):

1533–1578.

[25] TAMRAWI A, NGUYEN T T, AL-KOFAHI J M, NGUYEN

T N. Fuzzy set and cache-based approach for bug triaging

[C]// Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of

Software Engineering. ACM, 2011: 365–375.

[26] XUAN J, JIANG H, REN Z, YAN J, LUO Z. Automatic bug

triage using semi-supervised text classification [J]. arXiv:

1704.04769, 2017.

[27] HAN D, ZHUO H, XIA L, LI L. Permission and role

automatic assigning of user in role-based access control [J].

Journal of Central South University, 2012, 19(4):

1049–1056.

[28] ANVIK J, HIEW L, MURPHY G C. Who should fix this bug?

[C]// Proceedings of the 28th International Conference on

Software Engineering. ACM, 2006: 361–370.

[29] SHOKRIPOUR R, ANVIK J, KASIRUN Z M, ZAMANI S.

Improving automatic bug assignment using time-metadata in

term-weighting [J]. IET Software, 2014, 8(6): 269–278.

[30] ZHANG X, WANG T, YIN G, YANG C, YU Y, WANG H.

DevRec: A developer recommendation system for open

source repositories [C]// International Conference on

Software Reuse. Springer, 2017: 3–11.

[31] ZHANG X, WANG T, YIN G, YANG C, WANG H. Who

will be interested in? A contributor recommendation

approach for open source projects [C]// Proceedings of the

J. Cent. South Univ. (2018) 25: 1129–1143

1143

29th International Conference on Software Engineering &

Knowledge Engineering, 10.182931SEKE2017-067.

[32] THONGTANUNAM P, KULA R G, CRUZ A E C,

YOSHIDA N, IIDA H. Improving code review effectiveness

through reviewer recommendations [C]// Proceedings of the

7th International Workshop on Cooperative and Human

Aspects of Software Engineering. ACM, 2014: 119–122.

[33] RAHMAN M M, ROY C K, COLLINS J A. CoRReCT:

Code reviewer recommendation in GitHub based on

cross-project and technology experience [C]// Software

Engineering Companion (ICSE-C), IEEE/ACM International

Conference on. IEEE, 2016: 222–231.

[34] YU Y, WANG H, YIN G, LING C X. Who should review this

pull-request: Reviewer recommendation to expedite crowd

collaboration [C]// Software Engineering Conference

(APSEC), 2014 21st Asia-Pacific. IEEE, 2014, 1: 335–342.

[35] ZANJANI M B, KAGDI H, BIRD C. Automatically

recommending peer reviewers in modern code review [J].

IEEE Transactions on Software Engineering, 2016, 42(6):

530–543.

[36] XIA Z, SUN H, JIANG J, WANG X, LIU X. A hybrid

approach to code reviewer recommendation with

collaborative filtering [C]// 2017 6th International Workshop

on Software Mining (Software Mining). IEEE, 2017: 24–31.

(Edited by YANG Hua)

中文导读

RevREC：一个基于 Pull-Request 开发模型的双层审阅人推荐算法

摘要：代码审查是减少代码缺陷和提高软件质量的重要过程。在像 GitHub 这样的社交编码社区，由

于每个人都可以提交 Pull-Request，所以代码审查扮演着比以往更重要的角色，而且这个过程非常耗

时。因此，寻找并推荐正确的评审人员来应对新兴的 Pull-Request 成为一项重要任务。然而，目前大

部分的研究主要集中在评估人员是否参与，并没有对人员参与的类型进行区分。在本文中，我们开发

了一个两层审阅人推荐模型，从技术和管理角度为 GitHub 项目中的 Pull-Request(PR)推荐审阅人。对

于第一层，我们根据混合推荐方法推荐合适的审阅人对目标 PR 进行审阅。对于第二层，在从第一层

获得推荐结果之后，我们指定被推荐的审阅人是技术还是管理上参与审阅过程。我们在 GitHub 的两

个热门项目上进行了实验，并使用 2016 年 2 月至 2017 年 2 月期间创建的 PR 来测试该方法。结果显

示，我们的推荐模型的第一层比以前的工作表现得更好，第二层可以有效地区分参与类型。

关键词：Pull-Request；代码审阅人推荐；GitHub；开源社区

