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ABSTRACT

Code summarization aims at generating natural language
abstraction for source code, and it can be of great help
for program comprehension and software maintenance. The
current code summarization approaches have made progress
with neural-network. However, most of these methods focus
on learning the semantic and syntax of source code snippets,
ignoring the dependency of codes. In this paper, we propose
a novel method based on neural-network model using the
knowledge of the call dependency between source code and its
related codes. We extract call dependencies from the source
code, transform it as a token sequence of method names, and
leverage the Seq2Seq model for code summarization using the
combination of source code and call dependency information.
About 100,000 code data is collected from 1,000 open source
Java proejects on github for experiment. The large-scale code
experiment shows that by considering not only the code itself
but also the codes it called, the code summarization model
can be improved with the BLEU score to 33.08.

CCS CONCEPTS

• Software and its engineering → General program-
ming languages.

KEYWORDS

Code Summarization, Neural Network, Open Source, Call
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1 INTRODUCTION

The rapid growth of open source projects provide large num-
ber of reusable components for software development [24].
However, a large proportion of OSS projects are lack of nat-
ural language comments. For example, the comment rate for
the popular deep learning framework Tensorflow is only 9.2%,
and that for Hadoop is 13.1%. This may result in obstacles for
software comprehension and increase the cost for the future
maintenance [7]. Automatic code summary generation is a
hot topic in this field.

Traditional automatic summary techniques are based on
Information Retrieval [8, 10, 17].In recent years, machine
learning methods are leveraged to solve this problem. The
basic idea is regarding summarizing codes process as language
translation tasks, view the source code and its structure
information as input and translate source codes into natural
language with its functional description [2, 3, 13]. However,
most of these methods mainly focus on the first level of code
structure, ignoring the valuable information about call graph
of source codes.

“I set the brake up by connecting up rod and lever. - Yes,
given the whole of the rest of the mechanism.” [23]. For pro-
gramming language, the situation is the same. Programmers
assign meaning to variable names, functions and classes fol-
lowing the basic rules of programming language. A function
is completed, that means not only the codes of this function
is done, but also all codes that called by it must have been
completed.

For instance, if we want to implement the function re-
place(), the method invocations in it such as substitute() and
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toString() must be implemented first. In other words, pro-
gramming language has different layers. To implement a high
level function, the basic levels it used must be implemented
first.

/* Replaces all the occurrences of variables with

their matching values from the resolver using the

given source string as a template.*/

source code:

public String replace(final LogEvent event , final

String source , final int offset , final int length

)

{

if (source == null) { return null; }

final StringBuilder buf = new StringBuilder(length

).append(source , offset , length);

if (! substitute(event , buf , 0, length)) {

return source.substring(offset , offset + length)

;

}

return buf.toString ();

}

related code:

String toString (){

return "StrSubstitutor(" + variableResolver.

toString () + ")";

}

Code summarization is targeted at finding the meaning of
code snippets. Exploiting the meaning of related codes called
by source code can serve the target. The code summarization
showed above is “Replaces all the occurrences of variables
with their matching values from the resolver using the given
source string as a template”. However, one cannot get any
information about “variables with their matching values from
the resolver” by only analysing the source code in replace().
There are no such method names or variable names related to
it. If the information about the related code toString() can be
taken into consideration, it can be inferred that variableRe-
solver.toString() makes contribution to generating “variables
with their matching values from the resolver”.

One of the reasons why previous comment generation
methods do not consider related calls is that they only save
the (codes,annotation) pairs when collecting data. They can
neither know the position of the code in a project nor the
relationship between these code snippets when processing
these data. We redesign the data collection processing by
taking care of the call relations between codes.

In this paper, we design a new code summarization ap-
proach based on neural-network algorithm, which employs
both the source code information and call dependencies1.

We implement a tool to extract JAVA call dependencies
of codes based on JAVA Abstract Syntax Tree(AST) anal-
ysis [21]. The method invocation names between caller and
callees are extracted as the representation of call dependency
information. Then the call dependency information is used
to assist the generating from source code to natural language
description

1Data and code are available at https://github.com/yorhaz40/CallNN

Our experiments are based on a large-scale JAVA open
source repository for more than 1,000 projects which are
collected from github. We extract 100,000 (code, call depen-
dency, comment) tuples from the repository as data. Divide
them with the proportion of 8:1:1 as train, validation and
test data. The experiment results show that call dependency
information can improve the effect of the model and make
contribution to code summarization task.

The contributions of our work are as follows:

∙ We propose a new approach to summarize codes with
call dependency information based on neural-network
sequence model.

∙ We implement a tool that can extract call dependency
on source code within project.

∙ Extensive experiments are conducted on more than
1,000 projects. The results suggest the effectiveness of
our approach.

2 RELATED WORKS

With the development of software, many studies have focused
on the summarization of software artifacts including source
code, commit messages, bug reports ad etc. [18] Besides the
software artifacts above, most of the researchers focus on the
summarization of source code. It is directly related to the
software development and reuse.

Traditional summarization approaches are based on in-
formation retrieval(IR) methods. Bacchelli et al. [5] linked
emails and source code by generating technical term vectors
based on vector space model. Haiduc et al. [10] generated
text summaries based on technical terms and latent seman-
tic indexing method. Though IR-based approaches are easy
and effective, they are limited by the text information. It is
difficult to generate suitable summaries if there is not much
natural language regarding to the source code.

Recently, the development of natural machine translation
brings new breakthroughs in code summarization area. These
machine translation models are based on the model called
seq2seq, which aims to encode an input sequence of tokens
to a vector and decode it to generate target sequence [6, 11].
A way to use this model in code summarization is to sub-
stitute input sequence with code sequence, and target the
natural description of codes as output. The basic hypothesis
is that some hidden information exists between source codes
and its summarization. The model learns hidden informa-
tion on source code with encoder structure, then decodes
the information to generate summarization [15]. By using
machine learning model, code summarization tools can know
the meaning of codes.

Programming language code has a huge difference between
natural language. It should be structured, made no confuse
on semantics, be analyzed by parser and executed by comput-
er [1]. Some works are done to add extended information to
fit model on code-to-nl situation. DeepCom [13] proposes an
approach to analyze structural information on Java methods
for better generation. TL-CodeSum [14] and DeepAPI [9]
captures the API knowledge in the source code to help model
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training. Code2seq implements an other way to present codes
as vectors using a simple neural network. They treat the
codes as a set of structured paths. Their model focuses on
the structural information about the codes [4].

All these machine learning based methods try to explore
useful information contained only in the source code. However,
they ignore the fact that the function of source code is relying
on other codes dependent by the source code for programming
language. The paper pays attention on exploiting useful
information contained in call dependencies on codes to assist
generating code summarization.

3 OUR APPROACH

This section gives a description of the details of our approach.

3.1 Framework of Code Summarization
Approach

In this paper, we propose a code summarization method based
on neural-network model considering both source codes and
call dependencies. We extract call dependency from source
codes, transform it as a token sequence of method names,
then leverage the Seq2Seq model for code summarization
using the combination of source code and call dependency
information.

As shown in Figure 1, the whole process can be divided into
three parts: data processing, model training and summary
generation with trained model. The main process of these
three steps are as follows:

∙ Data Processing: Extract call dependency between
source code and its related codes. Present the call
dependency as a sequence of tokens.

∙ Model Training: Set up two encoders, one for the
source codes, one for the call dependency sequence.
Integrate the two outputs and decode them to the
target natural language summarization.

∙ Code Summary Generation: As for a new snippet
of code, extract its call dependency first. Then put the
source code and its call dependency sequence in the
trained model to generate its code summarization.

The granularity of code snippets can be alternative, such
as a class,a method or a statement. The method level codes
are always not too long. They have their own independent
function that can be described as natural language. So we
choose method level JAVA codes as our source data in this
paper.

The key idea of this paper is to use call dependencies as
an assistance to generate code summarization. To achieve
this goal, there are two major tasks should be depicted in
detail. First, how to extract call dependencies on a given code
snippet and how to present them. Second, how to implement
the model to make use of the call dependency information to
train the model.

Algorithm 1 Call Dependency Extraction Process

Input: Java method 𝐽 , source file 𝐹𝑠, related files 𝐹𝑟

Output: sequence of call dependency 𝐶𝑠𝑒𝑞

Build Java abstract syntax tree from method 𝐽 , source file
𝐹𝑠 and its related files 𝐹𝑟.
Get the AST of 𝐽 as 𝐽𝑡

Get the set of ASTs of all related files in 𝐹𝑟 as 𝐹𝑟𝑡

Get the AST of 𝐹𝑠 as 𝐹𝑠𝑡

Generate a variance pool 𝑉𝑝 from 𝐹𝑟

Generate a Java method declaration pool 𝑀𝑝 from 𝐹𝑟

Extract method invocations 𝑀𝑖 from 𝐽
for 𝑚 in 𝑀𝑖 do

add 𝑚 to call dependency list 𝐶𝑠𝑒𝑞

Try to find 𝑚 in 𝑀𝑝 and use 𝑉𝑝 to check the parameter
of 𝑚

if 𝑚 is found then
Check whether it is a loop call
if 𝑚 is not a loop call then

Do Call Dependency Extraction Process with
𝑚, its source file and its relatd files

Merge the result 𝐶𝑠𝑒𝑞′ from Call Dependency
Extraction Process with 𝐶𝑆𝑒𝑞

end if
end if

end for
Return 𝐶𝑠𝑒𝑞

3.2 Call dependency extraction

The call dependency extraction tool is based on JAVA ab-
stract syntax tree [19]. It is a tree structure representation
of source code abstract syntax, whose leaf nodes are source
code tokens and non-leaf nodes are types of the tokens. With
the help of AST, we can extract method invocations from
given codes.

The call dependency extraction process can be demonstrat-
ed as Alg 1. It is a recursive algorithm calling itself at “Do
Call Dependency Extraction Process with 𝑚, its source file
and its related files”. The algorithm takes a Java method as
input to analyse. To get to know what methods are called by
𝐽 , 𝐽 ’s source file and its related files must be considered.

The files in a project’s folder are regarded as related files.
These files do not include third parted library calls and system
calls. They are difficult to get by only using static analysis
method. Besides, there are also call relations between third
parted libraries. It can make the third parted library analysis
expand to a huge scale. So our tool have not considered
them yet. All method declarations of source file and related
files are included in the method pool 𝑀𝑝. It contains all
method declarations with their body codes. It is prepared
for searching call dependency. We can directly get the called
codes when a method invocation in source code is also found
in this pool. The variance pool 𝑉𝑝 records variance names
and their types. It is used to identify function overloading
when two methods have the same name. The algorithm stops
when it cannot find any method in its method pool. To avoid
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Figure 1: Structure of CallNN

public void writeOut(OutputStream out) throws IOException {    
out.write(_header);    
layoutAtom.writeOut(out);        
writeLittleEndian(masterID, out);    
writeLittleEndian(notesID, out);      

 short flags = 0; if (followMasterObjects) { flags += 1;}    
if (followMasterScheme) { flags += 2;}    
if (followMasterBackground) { flags += 4;}    
writeLittleEndian(flags, out);   

 out.write(reserved);
 } private void write(){    

int pos = 0;    
_data = IOUtils.safelyAllocate(indents.size() * 6, MAX_RECORD_LENGTH);    
for(IndentProp prop : indents){       

 LittleEndian.putInt(_data, pos, prop.getCharactersCovered());       
 LittleEndian.putShort(_data, pos + 4, (short) prop.getIndentLevel());
 pos += 6;
 }
 }

 public static void writeLittleEndian(int i, OutputStream o) throws IOException{   
 byte[] bi = new byte[4];
 LittleEndian.putInt(bi, 0, i);
 o.write(bi);
 }

Figure 2: Call dependency of WriteOut()

endless loop caused by circular call between codes, “Check
whether it is a loop call” must be done. We use a loop call
pool to save the methods that have been called. A method
has been analysed will not be analysed again.

𝐶𝑠𝑒𝑞 is the result call dependency which is represent-
ed by a sequence of method names that invoked by the
source code. To keep the structure and layer information
about call dependency sequence, we format the 𝐶𝑠𝑒𝑞 as
𝑚𝑒𝑡ℎ𝑜𝑑𝑛𝑎𝑚𝑒(𝑐𝑎𝑙𝑙1, 𝑐𝑎𝑙𝑙2, (. . . ), 𝑐𝑎𝑙𝑙3, . . . ). ‘(’ and ‘)’ serve
the target of divide different function levels when merging the
different layers of 𝐶𝑠𝑒𝑞′ and 𝐶𝑠𝑒𝑞 . It is like the format used in

DeepCom [13] to split different level of AST. For example, Fig-
ure 2 shows that given a Java method 𝑤𝑟𝑖𝑡𝑒𝑂𝑢𝑡(), how we ex-
press the call dependency sequence of it. The call dependency
about 𝑤𝑟𝑖𝑡𝑒𝑂𝑢𝑡() is: writeOut ( writeOut writeLittleEn-
dian ( write ( putShort safelyAllocate putInt ) putInt
) write ( putShort safelyAllocate putInt ) )

3.3 The code summarization model

We name Our code summarization model as CallNN for
using call dependency information. Figure 3 shows the struc-
ture of the model. It is based on the seq2seq model, which
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has achieved great success in natural machine translation
area [22]. To make use of the call dependency information,
an extra encoder structure is extended. There are two en-
coders in the model, one for source code, another for call
dependency. The decoder uses combined information about
these two encoders to generate natural language description.
The model structure is similar to TL-CodeSum [14] with an
extended encoder to learn API sequences.

(

void writeOut EOS...

hc2 hc3hc1 hct

hq2 hq3hq1 hqt

writeOut write )

public

st-1 st

Code “C”

Decoder  
“N”

Call  
dependency  
“Q”

...

...

...

...

Figure 3: Summarization model with call dependen-
cy

Let 𝐶 = {𝐶𝑖} be the set of code snippets sequences. Then
𝐶𝑖 = [𝑐1, 𝑐2, . . . , 𝑐𝑚] is one of the code snippet with 𝑐𝑗 as code
token. Each 𝐶𝑖 is paired with a 𝑄𝑖 = [𝑞1, 𝑞2, . . . , 𝑞𝑛], which
denotes the call dependency sequence of 𝐶𝑖. 𝑄 is the set of
call dependency sequences. The (𝐶𝑖, 𝑄𝑖) pair is corresponded
to one natural language description 𝑁𝑖 = [𝑛1, 𝑛2, . . . , 𝑛𝑜].
The model targets to find a map 𝐶,𝑄 ↦→ 𝑁 as showed in
Figure 3.

𝐶 and 𝑄 have independent encoder structures. Each en-
coder uses RNN units to read sequence tokens one by one.
The hidden states of 𝐶 and 𝑄 at step 𝑡 denote as ℎ𝑐

𝑡 and ℎ𝑞
𝑡 .

ℎ𝑐
𝑡 = 𝑓(𝑐𝑡, ℎ

𝑐
𝑡−1) (1)

ℎ𝑞
𝑡 = 𝑓(𝑞𝑡, ℎ

𝑞
𝑡−1) (2)

The non-linear function 𝑓 generates 𝑡 step hidden state ℎ𝑡

using the information about previous hidden state ℎ𝑡−1 and
the 𝑡 token in input sequence. In this paper, we use Gated
Recurrent Units as 𝑓 . Decoder structure is trained to predict
conditional probability of the next word 𝑑𝑡. To better capture
the latent information between encoders and decoder, we use
attention mechanism [6].

𝑝(𝑑𝑡|𝑑1, 𝑑2, . . . , 𝑑𝑡−1, 𝐶,𝑄) = 𝑔(𝑑𝑡−1, 𝑠𝑡, 𝐴𝑡) (3)

𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑑𝑡−1, 𝐴𝑡) (4)

𝐴𝑡 =
∑︀𝑚

𝑗=1 𝛼
𝑐
𝑖𝑗ℎ

𝑐
𝑗 +

∑︀𝑛
𝑗=1 𝛼

𝑞
𝑖𝑗ℎ

𝑞
𝑗 (5)

𝑔 is a non-linear function which outputs the probability of
𝑑𝑡. 𝑠𝑡 is RNN hidden state for time step 𝑡 in decoder. 𝐴𝑡 is

the attention context vector calculated by a combination of
hidden states from encoder 𝐶 and encoder 𝑄. The weight of
hidden states is computed as:

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)∑︀𝑚

𝑘=1 𝑒𝑥𝑝(𝑒𝑖𝑘)
(6)

and

𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) (7)

is a score function which evaluates the matching degree
between inputs around position 𝑗 and outputs at position 𝑖.

4 EXPERIMENT SETUPS

4.1 Dataset

To get the call dependency, related source code files must
be included during analysis. As discussed in 3.2, the call
dependencies should be extracted within a project. The ex-
perimental data is extracted on more than 1,000 java projects
in github. We filter 100,000 code snippets from the database.
All these codes are method level codes and have their inde-
pendent functions with comments. We apply a regulation on
codes to substitute all the String type to “ STR” and all the
numbers to “ NUM”. In Javadoc, the first sentence of com-
ments usually describes the function of methods. We regard
the first sentence of the comments as our target sentence.

Table 1: Data details

Code

Count < 100 < 150 < 200 > 200 Avg
102,577 68,616 14,679 7,226 12,056 106

Comment

Count < 10 < 50 < 100 > 100 Avg
102,577 26,477 75,005 962 133 14

Call dependency

Count < 10 < 50 < 100 > 100 Avg
102,577 57,558 40,667 2,982 1,370 18

The details of data are in Table 1. The lengths of data
vary. The average code snippet length is 106, and there are
about 90% code snippets have less than 200 tokens. We set
the max length of code encoder to 200 tokens. The average
call dependency sequence length is 18, though there are still
some sequences have more than 200 length. To get as much
full call dependencies as possible, the max length of call
dependency encoder is set to 200 too. As for the decoder, the
max length is set to 30, which is enough for the length of
natural language description.

4.2 Experiment Settings

The dimension of GRU hidden states in our model is 128.
We set the embedding of code snippet, call dependency and
natural language summary to 128. The optimize algorithm
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Table 2: Summarization examples

Examples

Code
public void writeOut(OutputStream out)

throws IOException{

out.write(_header);

layoutAtom.writeOut(out);

writeLittleEndian(masterID , out);

writeLittleEndian(notesID , out);

short flags = _NUM;

if (followMasterObjects)

{flags += _NUM;}

if (followMasterScheme)

{ flags += _NUM; }

if(followMasterBackground)

{ flags += _NUM; }

writeLittleEndian(flags , out);

out.write(reserved);}

}

public static boolean isGiftCard( String

stPassed ){

if ( isOFBGiftCard(stPassed) ){ return true;

}

else if ( isValueLinkCard(stPassed)){ return

true ; }

return false ; }

Call dependency

writeOut ( writeOut writeLittleEndian
( write ( putShort safelyAllocate putInt )
putInt ) write ( putShort safelyAllocate
putInt ) )

tisGiftCard ( isOFBGiftCard ( stripCharsInBag
( append charAt indexOf toString length )
length isEmpty ( length ) sumIsMod10 )
isValueLinkCard ( startsWith stripCharsInBag
( append charAt indexOf toString length )
length isEmpty ( length ) ) )

Generated
Write the contents of the record back,
so it can be written to disk .

Check to see if a card number is a valid OFB Gift
Card .

Human-written
Write the contents of the record back,
so it can be written to disk .

Check to see if a card number is a supported Gift
Card .

Code
public void testScannerThrowsException

WhenCoprocessorThrowsDNRIOE () throws

IOException , InterruptedException{

reset();

IS_DO_NOT_RETRY.set(true);

TableName tableName = TableName.valueOf(

name.getMethodName ());

try(Table t = TEST_UTIL.createTable(

tableName , FAMILY)){

TEST_UTIL.loadTable(t , FAMILY , false);

TEST_UTIL.getAdmin ().flush(tableName);

inject ();

TEST_UTIL.countRows(t,new Scan().addColumn

(FAMILY , FAMILY));

fail(_STR );

}

catch(DoNotRetryIOException expected)

{ }

assertTrue(REQ_COUNT.get()>_NUM );

}

public static boolean injectCriteria( String

klassName ){

boolean trigger = false;

if(generator.nextFloat () <

getProbability(klassName))

{ trigger = true; }

return trigger;

}

Call dependency

testScannerThrowsExceptionWhenCoprocessor
ThrowsDNRIOE ( inject ( set ) getAdmin
countRows reset ( set ) loadTable valueOf
assertTrue flush set createTable (
waitUntilAllRegionsAssigned createTable
) fail )

injectCriteria ( getProbability ( isDebugEnabled
getFloat equals debug set getProperty )
nextFloat )

Generated
Tests the case where a coprocessor
throws the same data in a seek to the directory .

<UNK> method to check if we have reached
the point of injection .

Human-written
Tests the case where a coprocessor
throws a DoNotRetryIOException in the scan .

Simplistic method to check if we have
reached the point of injection .
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is stochastic gradient descent (SGD), and batch size is set
to 32. For decoder, we use beam search. The beam size is 5.
To limit the vocabulary size, we ordered the tokens in data
by their frequency and chose the most frequent tokens as
vocabulary. The vocabularies of code, call dependency and
summary are 50,000, 50,000 and 30,000. The model is trained
using Tensorflow on GPU.

4.3 Evaluation Metrics

We leverage the IR metrics used in TL-CodeSum [14] and
DeepCom [13] to evaluate the code summarization perfor-
mance: precision, recall and F-score.

Denote 𝑚 as the number of mapped unigrams between the
generated string output and target string. The total number
of unigrams in the output string is 𝑜 and total number of
unigrams in target string is 𝑡. The precision is defined as

𝑃 =
𝑚

𝑜
(8)

and recall is defined as

𝑅 =
𝑚

𝑡
(9)

Precision shows the ratio of matching words in the generated
comments. Recall shows the ratio of matching words in target
comments. F-score is calculated as

𝐹 =
2 * 𝑃𝑅

𝑃 +𝑅
(10)

which is an integration metric with precision and recall.
In addition, we also use machine translation metric BLEU [20]

to evaluate our model. It computes the n-gram precision of hy-
pothesis sequence according to the reference which is widely
used in nmt area. The score reflects the similarity between the
generated sequence and reference sequence, and is computed
as:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 * 𝑒𝑥𝑝(
𝑁∑︁

𝑛=1

𝑤𝑛𝑙𝑜𝑔𝑝𝑛) (11)

𝑝𝑛 is the ratio of length 𝑛 subsequences in the generated
sequence that also appear in reference. 𝑁 is the maximum
number of grams. It is set to 4 in experiment. 𝐵𝑃 is brevity
penalty,

𝐵𝑃 =

{︂
1 𝑖𝑓𝑐 > 𝑟

𝑒(1−𝑟/𝑐) 𝑖𝑓𝑐 ≤ 𝑟
(12)

The BLEU score has been used in DeepApi [9] to evaluate
the generated API sequences. Jiang et al. [16] uses it to
evaluate generated summaries for commit messages. It can
be inferred that BLEU is reasonable to measure generated
summarization in our experiment.

5 EXPERIMENT RESULTS

5.1 Generated summarization

Table 2 shows some summarization generated by our mod-
el. In the first case, the generated summarization is the
same as human-written. We check that this code snippet of
{writeOut()} is not appeared in train data. Both of human-
written and model generation understand the code and make
a good description of the function of writeOut(). However,

there are some cases the model generating summarization dif-
ferent from human-written summarization. In the second case,
human summaries the function of isGiftCard() as “Check to
see if a card number is a supported Gift Card”. But the model
learned the function of this code as “Check to see if a card
number is a valid OFB Gift Card”. It can be inferred that
the model can generate summarization with its knowledge of
call dependency “tisGiftCard ( isOFBGiftCard . . . ”.

There are also some bad generations. In the third cases,
the model generated summarization is lack of the information
about Exception. The model knows the method testScan-
nerThrowsExceptionWhenCoprocessorThrowsDNRIOE() is
to test the case where a coprocessor throws something. But it
does not understand this test function throws “DoNotRetryIO-
Exception”. Another bad situation is that some ‘<UNK>’
tokens are generated. In the last case, a ‘<UNK>’ token
is generated as the first token of the sentence. That can
make the summarization confused to read. We conjecture
the reason for these bad generations is caused by the lim-
itation of vocabulary. There are huge amount of different
variable names, class names and method names in the source
codes. We cut off the vocabulary to limit the size, which
may cause the model cannot understand some extremely rare
tokens, such as “testScannerThrowsExceptionWhenCopro-
cessorThrowsDNRIOE” and “DoNotRetryIOException”.

5.2 Baseline

The experiments of TLCodeSum [14] show that by using
the knowledge of api as input, the model outperforms using
the embeddings of tokens directly (CODE-NN) [15]. So we
compared our work with the TL-CodeSum [14] model which
use api in source code which is the state-of-the-art work in
code summarization area.

Table 3: Metrics compared with baseline

Approach Precision Recall F-score BLEU

TL-CodeSum(Code+Api) 0.4186 0.4152 0.4026 32.46
TL-CodeSum(Tranfer) 0.4214 0.4192 0.4062 32.55

CallNN 0.4269 0.4244 0.4121 33.08

5.3 Result discussion

As discussed above, TL-CodeSum only save the (codes,annotation)
pairs when collecting data. We cannot directly use their da-
ta for lake of call dependency information. So we recollect
our own dataset from projects on github and extract cal-
l dependency sequence. The experiment is set on exactly
same data collected by us to compare the three models.
TL-CodeSum(Code+Api) uses api and code as input and
TL-CodeSum model(Transfer) is with a pre-trained api-to-nl
model as transfer knowledge. CallNN uses call dependency
sequence information. The experiment result from Table 3
shows that our CallNN with call dependency information gets
the higher score of all these metrics. But the improvement is
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Table 4: Comparison between CallNN and TL-CodeSum generation

Examples

1

Call dependency
handleParseResult ( asList printHelpIfRequested ( printVersionHelp
( println ) usage ( usage ) isVersionHelpRequested isUsageHelpRequested )
emptyList )

Api sequence Collections.emptyList Arrays.asList

Target sentence
Prints help if requested and otherwise executes the top level Runnable or
Callable command

TL-CodeSum(Transfer) gen
runnable executed and unlike most of any order or all non - level option
or all Throwable mechanism

CallNN gen
Prints help if requested and otherwise executes the top level command and all
subcommands as Runnable or Callable

2

Call dependency getKeyComparator ( getInstance compare ( compare ) )
Api sequence Collator.getInstance Collator.compare
Target sentence Gets a comparator for comparing state entry keys
TL-CodeSum(Transfer) gen Gets a new instance of the given String and returns the name entry
CallNN gen Gets a comparator for comparing state keys

3

Call dependency getFloat ( get ( substituteVars ) parseFloat )
Api sequence Float.parseFloat
Target sentence Get the value of the name property as a float
TL-CodeSum(Transfer) gen Get the value of the name property as a float

CallNN gen
Get the private float value of its name , useful for loading
flags into the value .

4

Call dependency toString ( toString )
Api sequence Date.toString
Target sentence Generates a string representation of the date
TL-CodeSum(Transfer) gen Generates a string representation of the date

CallNN gen
Generates a JavaScript fragment that will be used for sending
of connections when this server was successful

not as much as we thought. We analyse the summarizations
of TL-CodeSum(Transfer) and CallNN to find out the reason.

There are 10257 code snippets in test data. The summa-
rizations generated by TL-CodeSum(Transfer) and CallNN
with same code snippet are not always similar to each other.
Table 4 shows four different generated examples of the two
models. CallNN model generates better summarizations for
the first two cases but gets lower BLEU scores in the last
two cases.

The target sentences in the first two cases have specific
functional descriptions. The specific functional descriptions
are related to the functional requirements within that project
such as “Prints help if requested” and “Gets a comparator”.
They are not general functions. The CallNN model generates
“Gets a comparator ”, but TL-CodeSum generates a more
general description “Gets a new instance”. CallNN genera-
tions are better in this situation. The target sentences in the
last two cases are general functional description such as “Get
the value of the name property as a float” and “Generates
a string representation of the date”. TL-CodeSum with api
performs better on these general meaning summarizations.

Our CallNN generates redundant words and wrong words in
these two cases.

According to the analysis above, we can conclude:

∙ CallNN generates better summarizations when the func-
tion is specific related to the meaning within a project.

∙ Comparing with TL-CodeSum, CallNN is not good at
generating general meaning summarizations.

∙ Yet, on the whole, the higher score of CallNN denotes
that call dependency information is to some extent
more important than apis only included in source code.

It can be inferred that call dependency can extend the
semantic information when generating summarizations. But
the call dependency we extract now is limited within project.
The third parted library calls and system calls are not taken
into consideration. We conjecture it is why CallNN does not
perform better on general meaning summarizations than TL-
CodeSum. A more completed extraction of call dependency
should be done in the future.
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6 QUALITY ANALYSIS

This section, we demonstrate the ability of our model in learn-
ing latent information about code. The token embeddings
and attention weights of the model are analysed to visualize
the “meaning” of call dependency. We also discuss the reason
for effect of our model.

parseIncludeDirective

parseScriptText

parseVariableDirective

Figure 4: Embedding of Call dependency

6.1 Embedding Quality

Embeddings are projected vectors of words of vocabulary. It
reflects the “meaning“ of tokens. We analyse the embeddings
of call dependency tokens. The dimension of call dependency
embedding is 128. It is projected to 2 using t-sne for visu-
alization. Figure 4 shows part of embeddings in our model.
The call dependency on analogous function aggregates with
each other. For instance, the“parseIncludeDirective“, “pars-
eScriptText“ and “parseVariableDirective“ are related to the
function of a parser for JSP page in tomcat7. In this aspect,
the embeddings learned by our model have effects to express
the meaning of call dependency. It denotes our model learned
the latent information about call dependency.

6.2 Attention of call dependency

As the input of the model is a sequence of tokens, each
token makes different contribution to the generation task.
To generate a hypothetical summarization, the model pays
different attention on these input tokens. It can be visualized
by the attention weight in the model. Figure 5 shows an
example of the call dependency attention on a generation of
code in Figure 2. The higher weights are with brighter colors.
To generate this summary, the model pays more attention to
the token ”putint”. It is a method invocation in the codes
of related method write() but not in the source method
writeOut(). To generate the summarization, the model not
only concentrates on the source code information, but also
makes use of the information about related codes. It can be
inferred that the call dependency is important to learn the
meaning of programming language.

The call dependency makes contribution to code under-
standing. It is according to our experiences of writing codes.

Figure 5: Attention vector of writeOut()

public void writeOut(OutputStream out) throws

IOException {

out.write(_header);

layoutAtom.writeOut(out);

writeLittleEndian(masterID , out);

writeLittleEndian(notesID , out);

short flags = 0;

...

writeLittleEndian(flags , out);

out.write(reserved);

}

private void write(){

int pos = 0;

_data = IOUtils.safelyAllocate(indents.size() * 6,

MAX_RECORD_LENGTH);

for(IndentProp prop : indents){

LittleEndian.putInt(_data , pos , prop.

getCharactersCovered ());

LittleEndian.putShort(_data , pos + 4, (short) prop.

getIndentLevel ());

pos += 6;

}

}

public static void writeLittleEndian(int i,

OutputStream o) throws IOException{

byte[] bi = new byte [4];

LittleEndian.putInt(bi, 0, i);

o.write(bi);

}

Take the writeOut() codes for example. If one want to know
the exact function of writeOut(), only use the information
about codes in writeOut(), he can not really meet his target.
He can know the function writeOut() call other functions
such as wirte() and wirteLittleEndian(). But he cannot know
the details of these method invocations. Only if he can also
get the information about write() and writeLittleEndian(),
the function of these related codes can be understood. At
this moment, the code reader can have a more comprehen-
sive understanding about the function writeOut(). This is
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why we usually jump from method invocations to method
definitions between files when we read codes. It is also part
of the same thing that a compiler does when it compiles a
program. Human design the caller-callee structure of pro-
grammig language, so the compiler must toe the mark. But
they follow the compiler rules conversely when human wants
to comprehend their codes.

7 CONCLUSION

This paper extracts call dependencies between source code
and its related codes from large-scale open source Java
projects on github. The call dependency information is ex-
pressed as a sequence of method name tokens to assist code
summarization. A model based on Seq2Seq is used to gen-
erate code summarization from source code using the call
dependency information. As far as we know, it is the first
attempt to consider call dependency information about code
in code summarization area with machine learning method.
Experiments show the effect of our method. By using call
dependency information, the CallNN can improve the perfor-
mance of code summarization.

However, the call dependency extracted in this paper is
limited with project, ignoring library calls and system call-
s. The extraction tool should be improved to extract more
completed call dependency in the future. Meanwhile, the
expression of call dependency on this paper is simply and
basic as a sequence of method names. There is still much
information about related codes which can be taken advan-
tage of. In the future, we will dig out more comprehensive
information about call dependency to help the generation
task.
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