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ABSTRACT
Code review is an important process to reduce code defects
and improve software quality. However, in social coding
communities using the pull-based model, everyone can sub-
mit code changes, which increases the required code review
efforts. Therefore, there is a great need of knowing the pro-
cess of code review and analyzing the pre-existing reviewer
recommendation algorithms. In this paper, we do an empiri-
cal study about the PRs and their reviewers in Rails project.
Moreover, we reproduce a popular and effective IR-based
code reviewer recommendation algorithm and validate it on
our dataset which contains 16,049 PRs. We find that the inac-
tive reviewers are very important to code reviewing process,
however, the pre-existing method’s recommendation result
strongly depends on the activeness of reviewers.
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1 INTRODUCTION
Over 30 years, code review has been regarded as the best
practice of software engineering both in industry and open
source communities [2], which can help to improve the qual-
ity of source code. Traditionally, code reviewers are third-
party developers who can identify the defects in source code
before integrating into the system [16], and the code review
process should be held in group meetings, which will cost
a lot of time. With the development of social coding com-
munities like GitHub, traditional code review is gradually
replaced by modern code review [9]. When a code change
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is submitted to developers for reviewing, the reviewers will
cooperate with each other to discuss and give suggestions
about the code. If the change meets the need of the project
and is supported by many reviewers, it will be integrated
into the project’s source code. However, code review actually
costs a lot of time [15], and the reviewers invited are not
always suitable for the job. Therefore, in order to reduce the
time cost and improve the effectiveness of code review, it is
necessary to recommend suitable reviewers to different code
changes.
With the development of distributed software develop-

ment, the pull-based model becomes more and more popular
because it can lower the barrier of developers, which means
that everyone can submit pull requests to the repository. Be-
cause the amount of code changes increases, open source
projects need more developers to review the PRs and guard
the quality of the project. As there are so many developers in
open source repositories and the number increases sharply,
it becomes more and more important to recommend suitable
and qualified reviewers to PRs.
Looking at the above factors, we find that for modern

code review especially pull-based models, it is necessary
to recommend developers to review code changes. There
have already existed many studies focusing on code reviewer
recommendation. Jeong, Balachandran, Thongtanunam, Yu
et al.[1, 7, 16, 20] focus on recommending suitable developers
for code changes or PRs, either by calculating the similarity
of developers’ technical focus or generating features from
the modified source code. However, they just focus on the
precision, recall or accuracy values, the reviewers that they
recommend still need to be analyzed.

The contributions of our work are as follows:

• We statistically analyze the review process in Rails,
and find that inactive reviewers are important to the
reviewing process. What’s more, code reviewer recom-
mendation is of great importance to the time-consuming
process.
• We reproduce a popular and effective recommendation
algorithm (IR-based recommendation) based on the
large dataset of Rails containing 16,049 PRs. We justify
that the existing recommendation approaches are easy
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to get into overfitting trouble, i.e., excessive reviewing
tasks tend to be recommended to active reviewers.

The rest of this paper is organized as follows. Section 2
reviews a few related studies. Section 3 describes the empir-
ical study of PRs in Rails. Section 4 presents the IR-based
reviewer recommendation method. Section 5 describes the
experiment settings. Section 6 discusses the experiment re-
sults. Section 7 elaborates the conclusion and describe the
future plans of the study.

2 RELATEDWORK
Modern Code Review
Code review is widely-agreed as the best software engineer-
ing practice in both industrial and open source contexts [2, 9],
which helps to improve the quality of source code and reduce
the defects in open source repositories. Traditionally, code
reviewing is a time-consuming and heavy-weight process,
which requires experts and a groupmeetingmost often [5]. In
order to speed up the process and improve the effectiveness
at the same time, there comes up many modern code review
methods. McIntosh, Kamei et al. [10] evaluated the impact
of code review coverage to the software quality. After that,
they extended their work and studied the influence of differ-
ent types of code reviews through an empirical study [11].
Bosu [3] and Morales [12] also found that code review did
have impact to security vulnerabilities and design quality
respectively. In addition to empirical studies, there are also
many studies focusing on the development of code reviewing
tools. For example, Mukadam et al. [13] developed Gerrit for
reviewing android based source code.

Developer Recommendation
With the increase of developers and repositories in social
coding communities, it is becoming more and more impor-
tant to recommend developers to different tasks so that there
can be a better development of open source repositories.

Bug assignment. There are large amount of bug reports and
huge number of developers in popular open source projects
(rails has more than 28K issues up toMay 2017), whichmakes
it a labor-intensive task to assign bugs to suitable fixers.
Therefore, recommending fixers to bug reports is of signif-
icant importance. Jeong, Kim et al. [6] recommended bug
fixers by building the tossing graph according to the bug fix
history. Kagdi, Poshyvanyk et al. [8] matched bug reports
with developers by extracting the technical terms of source
code committed by contributors and bug report description.
Canfora and Cerulo [4] also used the information retrieval
(IR) method, and indexed developers through the textual
information of bug reports.

Contributor recommendation. There are some other works
focusing on recommending contributors across different
projects in the whole community. Zhang et al. [23] expanded
users’ activities in social coding communities by matching
users from both GitHub and StackOverflow. Then recom-
mending potential developers who may have interests in
the target project. After that, Zhang [22] also proposed a
hybrid method by combing the weighted collaborative filter-
ing algorithm and the text matching algorithm based on the
collaborative network in GitHub.

Code reviewer recommendation. For the problem that we
focus on, Jeong, Kim et al. [7] predicted the code reviewer
by Bayesian Network. They trained the model using fea-
tures generated from the source code and code files. Thong-
tanunam et al. [16] found code reviewers by comparing
the file path. Balachandran [1] found suitable reviewers
by checking the change history of source code lines. Rah-
man et al. [14] recommended code reviewers across different
projects. Yu et al. [18–20] proposed methods for pull-based
code reviewer recommendation based on the social comment
network, which can reduce the human effort in reviewing
code changes [17, 21].

3 EMPIRICAL STUDY
The goal of ourwork is to find the necessity of recommending
code reviewers for PRs in Rails, and to evaluate the influence
of active developers on the recommendation result. Because
there are so many PRs, and code review is a time-consuming
process which is based on the reviewers’ ability. It is unprac-
tical and unnecessary for all the developers to review all the
PRs. In order to deeply understand the relationship between
developers and PRs, and make preparations for the code re-
viewer recommendation model, we propose two research
questions.
• RQ1: What is the difference between active and inac-
tive code reviewers? Do PRs need inactive reviewers
indeed?
• RQ2:Whywe say that code review is a time-consuming
process?

We do empirical studies on 16,049 PRs and 5,075 reviewers
before May 2017 in Rails project.

RQ1
In order to answer RQ1, we firstly analyze the reviewer
number of each PR to see whether PR reviewing process
needs many reviewers. The results is shown in Figure 1.
From Figure 1, we can see that, the number of reviewers

for each PR is very small. And the PRs which have 1 or
2 reviewers takes up 53.7%. Moreover, the number of PRs
which have more than 10 reviewers only takes up 1.1%. That
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Figure 1: Number of Reviewers for Pull Requests

is to say, when reviewing a PR, it is not necessary to invite
many reviewers.

Now that there is no need to invite so many reviewers to
review a PR, will active reviewers undertake all the reviewing
work? We calculate the number of reviewed PRs for each
developer in Rails, and get the changing curve of the top 100
reviewers. The result is shown in Figure 2.

Figure 2: Number of Reviews for Top 100 Reviewers

Figure 2 shows that for the top 100 active reviewers in
Rails, even though the number of reviewed PRs decreases
sharply from 4,695 to 30, the inactive developers also under-
take a large amount of reviewing work. That is to say, the
difference between active and inactive developers is very big,
however, inactive developers also play an important role.

We take pixeltrix as an example, whose activeness ranks
the 13th among all the code reviewers in Rails. He has re-
viewed 657 PRs till March 2017. From Figure 3, we see that
pixeltrix also submit reviews of high quality.

Figure 3: The Reviews by pixeltrix

From the above analysis, we conclude that although code
review is led by some super active reviewers, other reviewers
can also make a lot of contribution in the code reviewing
process. Therefore, when a PR comes, we do not need to
recommend those developers who are highly involved in
the reviewing process. On the contrary, it is important to
recommend other reviewers to undertake the code reviewing
work in order to reduce the burden of those active reviewers
and speed up the code reviewing process.

RQ2
For RQ2, in order to verify that code review is a time-consuming
process, we firstly calculate the time used for closing PRs,
which is shown in Figure 4.

Figure 4 shows that 40.4% PRs are closed in more than 10
days. Moreover, 28.9% PRs are closed more than a month.
That is to say, it is a long time for reviewers to finish review-
ing the code change. However, there are two possible reasons
for this situation. One is the start time for reviewing the PR
is late, the other is the reviewing process is time-consuming.
Therefore, we calculate the standard deviation of the first
three reviewers’ start time for each PR, which is shown in
Figure 5.

From Figure 5, we can see that for 68.8% PRs, the standard
deviation of the first three reviewers’ review time is less than
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Figure 4: Time Used for Closing Pull Requests

Figure 5: The Standard Deviation of the First Three
Reviewers’ Start Time

one day, which means that the time gap between each re-
viewer’s participation is less than 1 day. Therefore, these PRs
can attract reviewers to participate in a short time. However,
there are still 32.2% PRs which cannot attract enough PRs in
a short time. For them, it is important to apply code reviewer
recommendation algorithm so that different reviewers can
focus on them at the same time. For all the PRs, code re-
viewer recommendation can help to find suitable reviewers
and shorten the time for reviewing theoretically.

4 REVIEWER RECOMMENDATION METHOD
IR-based Reviewer Recommendation
In this section, we will present a simple and popular reviewer
recommendation algorithm. From Yu’s work [20], we find
that the IR-based approach is the most suitable traditional
method for recommending code reviewers to PRs in GitHub.
The process of this method is show as below.

Firstly, we generate the technical terms of each PR in
the project based on its title and description. By removing
the stop words pre-defined before this process, we get the
technical focus of each PR. All the technical terms can form
into a corpus.

Secondly, we generate the term vector of each PR accord-
ing to the TF-IDF algorithm (equation 1), where different
PRs’ technical terms will get different values.

TF − IDF (t ,pr ) =
f req(t ,pr )∑

t ′ ∈Tpr f req(t
′
,pr )

× loд(

∑
pr ′ ∈PR

∑
t ′ ∈Tpr ′

f req(t
′

,pr
′

)∑
pr ′ ∈PR f req(t ,pr ′ )

) (1)

In this equation, t represents a specific term. f req(t ,pr )
means the number of times term t occurs in pull request pr .
Tpr represents all the technical terms in pr .

Thirdly, when a test PR comes, we calculate the relation-
ship between each PR using the cosine similarity (equation 2).
The vector of each PR is formed by the technical terms in
the whole corpus.

similarity (pr ,pr
′

) =
vpr · vpr ′

|vpr | |vpr ′ |
(2)

After that, we summarize the relationship between each
PR that a developer has reviewed before and the target PR.
Then we get the relationship between the developer and the
target PR (equation 3).

relation(d,pr ) =
∑

pr ′ ∈PRd

similarity (pr ,pr
′

) (3)

In this equation, d represents a developer. PRd means the
PR set that the developer d has reviewed before.
Therefore, when a target PR comes, we calculate the re-

lationship between each developer and the target project.
Then rank the values in descending order, and recommend
the top several results.

Rails Robot
For Rails project itself, there is a developer called “rails-bot”
which was created on May 2th , 2014. It is actually a robot
which is used to assign code reviewers for Rails PRs. When
a PR comes, “rails-bot” can find suitable developers for the
PR and make a comment below by “@” someone to review.
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This robot is designed to help reviewers find related PRs and
speed up the reviewing process.

5 EXPERIMENT
Data set
In this section, we will present the data set that we use to
test the IR-based recommendation model. We focus on the
recommendation of PRs in Rails 1 in GitHub.
For the performance test of IR-based recommendation

method itself, we select the PRs from January, 2012 to Feb-
ruary, 2017, and get 16,049 in total. These PRs are used to
form the term corpus of IR-based recommendation algorithm.
Among these PRs, we select those created from February
2016 to February 2017, then filtering those with no actual
reviewers 2. Finally, we get 3,034 PRs for the test process.
For the performance comparison between IR-based rec-

ommendation approach and Rails Robot, we select the PRs
within the test set in the first experiment that Rails Robot
has made recommendation, and finally get 2,225 PRs.

The data set can be seen in table 1.

Table 1: Dataset In GitHub

Experiment Process PR
Number

IR-based Method
Performance

Training Corpus 16,049
Test 3,034

Performance
Comparison

Training Corpus 16,049
Test 2,225

Experiment Metrics
For the validation of our experiments, precision and recall
are not suitable to measure the model’s performance. For
the false positives of our recommendation result (the recom-
mended developers who have not reviewed the PR), they can
still review the PR sometime in the future. Even though the
PR is closed, it can still be reopened. Therefore, the precision
and recall values will change according to the time frame
that we select.

Therefore, we use the accuracy value to measure the per-
formance of our recommendation model. The equation is
shown as below (equation 4).

accuracy =

∑ |PRs |
i=1 hasTrue (PRsi )

PRs
(4)

where PRs means the set of test PRs in the target project,
and hasTrue is a function which checks whether a PR has
got a true code reviewer.
1https://github.com/rails/rails
2actual reviewers: reviewers that are not the PR author or the Rails Robot.

6 RESULTS
In this section, we will present the results of the two ex-
periments, the performance of IR-based recommendation
algorithm and the comparison between IR-based recommen-
dation algorithm and Rails Robot.

Firstly, in order to check the effectiveness for recommend-
ing those inactive reviewers, we remove those super active
reviewers to see the accuracy value. The result can be seen
in Figure 6.

Figure 6: Accuracy of IR-based Recommendation
Algorithm

From Figure 6, we can see that when recommending 1 to
10 reviewers, the accuracy value of the IR-based algorithm
ranges from 26.6% to 51.3%. However, when we remove the
most active reviewer called “rafaelfranca”, the accuracy drops
a lot, ranging from 0.07% to 34.1%. Moreover, when we re-
move the top 2 reviewers called “rafaelfranca” and “senny”,
the accuracy will also drop to some extent. That is to say,
the IR-based recommendation algorithm is influenced by
the activeness of reviewers and is tend to recommend active
developers to review PRs, however, these reviewers will par-
ticipate in the reviewing process spontaneously. Therefore,
a more effective recommendation algorithm that focuses on
the inactive reviewers is still in demand.
Although the IR-based recommendation algorithm still

needs to be improved, comparing to the Rails Robot, it per-
forms better. When recommending one developer to the
2,225 PRs, the accuracy for IR-based Recommendation Al-
gorithm is 25.1%, however the accuracy for Rails Robot is
18.7%.
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7 CONCLUSIONS AND FUTUREWORK
This study explores the pull-request review process of Rails
in GitHub intensively, and discusses the weakness of the
current popular recommendation algorithms. We firstly did
an empirical study and conclude that code reviewer recom-
mendation especially for those inactive reviewers is very
important. Then we test the IR-based recommendation al-
gorithm and found that this method mainly recommends
those active reviewers, which is not that useful for reviewer
recommendation. However, comparing with the Rails Robot
for Rails project itself, it still performs better.

For the future work, we will firstly create a more effective
code reviewer recommendation algorithm based on the be-
havior of inactive developers and then do some fine-grained
recommendation work. We will check reviewers’ different
types of participation, including the code layer review and
the management layer review. Then based on PRs’ different
requirements, we will recommend different types of review-
ers to speed up the reviewing process.
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