Journal Pre-proof

~ INFORMATION

AND

Open source oriented cross-platform survey T.Zg;; %(%EY

Simeng Yao, Xunhui Zhang, Yang Zhang, Tao Wang

PII: S0950-5849(25)00043-6 ——
DOI: https://doi.org/10.1016/j.infsof.2025.107704
Reference: INFSOF 107704

To appear in: Information and Software Technology

Received date: 12 September 2024
Revised date: 26 January 2025
Accepted date : 24 February 2025

Please cite this article as: S. Yao, X. Zhang, Y. Zhang et al., Open source oriented cross-platform
survey, Information and Software Technology (2025), doi:
https://doi.org/10.1016/j.infsof.2025.107704.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier B.V.

https://doi.org/10.1016/j.infsof.2025.107704
https://doi.org/10.1016/j.infsof.2025.107704

Highlights

Open Source Oriented Cross-platform Survey

Simeng Yao,Xunhui Zhang,Yang Zhang,Tao Wang

e We focus on summarizing the current state of development of open source oriented cross-platform research.
e We summarize the datasets, research methods, etc. used in the existing literature.

e We propose 6 future directions for cross-platform research in open source and provide corresponding recommendations
for developers, researchers, and service/tool providers.

Open Source Oriented Cross-platform Survey

Simeng Yao, Xunhui Zhang, Yang Zhang and Tao Wang*

4College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
bState Key Laboratory of Complex & Critical Software Environment, Changsha, 410073, China

ARTICLE INFO ABSTRACT

Keywords:

Open Source
Cross-platform

Systematic literature review
GitHub

StackOverflow

Twitter

Context: Open-source software development has become a widely adopted approach to software
creation. However, developers’ activities extend beyond social coding platforms (e.g., GitHub),
encompassing social Q&A platforms (e.g., StackOverflow) and social media platforms (e.g., Twitter).
Therefore, cross-platform research is essential for a deeper understanding of the nature of software
development activities.

Objective: This paper focuses on open-source platforms and systematically summarizes relevant
cross-platform research. It aims to assess the current state of cross-platform research and provide

insights into the challenges and future developments in this field.

Method: This paper reviews 69 cross-platform research papers related to open-source software from
2013 to 2024, with a focus on several key areas, including platform interconnections, research themes,
experimental design methods, challenges and rersearch opportunities.

Results: Through the analysis of 69 papers, we found that cross-platform research primarily involves
platforms such as social coding, social Q&A, and social media. Researchers typically rely on
information traces, including user personal info, technical info, project/post/bug report metadata,
interaction info, to facilitate connections between platforms. Cross-platform research in the open-
source domain mainly focuses on problem classification and feature extraction. The predominant
research methods include data-driven approaches, qualitative studies, modeling and machine learning,
and tool development and implementation. Despite these advancements, common challenges remain,
such as subjective evaluation bias in manual data classification, insufficient data source coverage, and
inaccurate data recognition. Future research opportunities may focus on increasing the diversity of data
sources, improving data recognition accuracy, optimizing data classification methods, and clarifying
user skill requirements.
Conclusions: Based on our findings, we propose six future directions for cross-platform research in
the open-source domain and provide corresponding recommendations for developers, researchers, and

service/tool providers.

. 1. Introduction

2 Traditional software development methods often rely on
closed teams and internal resources, leading to longer devel-
opment cycles and innovation constrained by the size and
experience of the development team. In contrast, platform-
based development models, by opening code repositories,
allow developers worldwide to contribute and share code,
thereby significantly enhancing development efficiency and
innovative capabilities. With the rise of social coding plat-
10 forms such as GitHub and GitLab, the shift from tradi-
tional closed development to platform collaboration has
been greatly accelerated [1]. As of 2024, the GitHub plat-
form has more than 100 million registered users and over 420
million repositories', forming a vast software development
social interaction network that greatly promotes code shar-
ing and collaborative development. Although social coding
platforms include issue trackers and support code review,
developers often do not limit their activities to these plat-
forms alone due to individual preferences and differences in
platform focus [2], but instead engage in information sharing

w

IS

@

o

~

©

©

-
=y

-
o

-
@

-
=

-
=

-
o

2

=
53

©

N
S

*Corresponding author
B4 E-mail addresses:yaosimeng23@nudt.edu.cn(S.Yao),
zhangxunhui@nudt.edu.cn(X.Zhang), yangzhangl5@nudt.edu.cn(Y.Zhang),
taowang2005@nudt . edu.cn (T. Wang)
ORCID(S):
1https://github.com/about

N
=

N
>

N
@

™
R

]
&

N
3

N
I

N
@

N}
-3

3

S

3

=

3

b

3

@

3

i

3!

&

3

&

3

4

3

&

3

©

4

S

4

a

4.

S

4

&

44

4

&

4

>

and development collaboration in broader platforms. For ex-
ample, the social Q&A platforms (e.g., Stack Overflow) pro-
vides developers with a platform for sharing knowledge and
solving programming problems [3], enabling them to obtain
rapid knowledge-sharing and problem-solving services that
are difficult to provide through social coding platforms[4],
and then apply software development solutions to project
repositories. By combining social Q&A platforms with so-
cial coding platforms, developers can collaborate efficiently
on multiple platforms, sharing knowledge and facilitating
the progress in actual code development. Additionally, the
social media platform (e.g., Twitter) has become an im-
portant platform for disseminating information and learning
about new technologies, helping developers stay informed
about industry trends [5], and promoting projects within
social coding platforms to a broader audience. Subsequently,
these projects can attract more software developers to join
the project’s sustained development and collaboration[6].
Therefore, developers are increasingly relying on these so-
cial media and social Q&A platforms to communicate and
resolve issues, effectively aiding developers in addressing
various challenges in project development[7, 8].

Although significant progress has been made in single-
platform studies, such as GitHub collaboration analysis and
Stack Overflow knowledge-sharing modeling [9], funda-
mental limitations persist in addressing the growing demand

S.Yao et al.: Preprint submitted to Elsevier

Page 1 of 31

47

H
o

Information and Software Technology

for interconnectedness in software development. The neces-
sity of cross-platform research is contingent upon whether
the research question involves multi-source data dependen-
cies or the analysis of behavioral heterogeneity. Within the
domain of open-source software (OSS), the single-platform
perspective exhibits notable shortcomings in the following
scenarios:

Data Incompleteness: Developer activities naturally
span multiple technical platforms (e.g., code commits on
GitHub, answering questions on Stack Overflow, and defect
tracking on Bugzilla), forming a technical collaboration
ecosystem. Single-platform data captures only partial be-
haviors, resulting in critical information loss. For instance,
Song et al. [2] quantified expertise using an expertise matrix
and found that single-platform developer expertise sparsity
(SPE) ranged from 0.95 to 0.97, whereas cross-platform joint
modeling reduced SPE to 0.9351. Similarly, Hong et al. [10]
demonstrated that integrating data from GitHub, Bugzilla,
and Stack Overflow could improve patch coverage by 400%.

Systemic Risks: In practice, developers not only reuse
code within a single platform but also frequently source
problem-solving solutions from platforms like Stack Over-
flow to support project development [11]. Studies have
shown that single-platform code reuse can lead to various
issues, including potentially harmful code snippets [12],
copyright violations [13], and code modifications [14]. In
contrast, cross-platform research, by integrating data from
multiple platforms, offers a more comprehensive approach
to identifying and addressing these risks.

Behavioral Complexity: Developer behaviors exhibit
significant heterogeneity due to differences in platform func-
tionalities. Han et al. [15] highlighted notable variations in
knowledge focus across platforms, while Wu et al. [16],
through developer interviews, revealed that respondents per-
ceived GitHub’s social features as limited and preferred
using social media platforms like Twitter for technical in-
teractions.

These challenges fundamentally pertain to the core is-
sues of code quality governance and collaboration efficiency
optimization in the field of software engineering. Through a
systematic literature review, this study extracts key themes
and methodologies in cross-platform research, providing a
methodological foundation for constructing a more robust
open-source collaboration ecosystem. As cross-platform de-
pendencies in software development continue to intensify,
such research holds strategic significance for risk mitigation
and efficiency enhancement.

This paper answers the following research questions:

RQ1: How are different platforms connected in cross-
platform studies?

The goal of this research question is to explore how
various platforms are interlinked in cross-platform studies.
This helps researchers identify the relevant connections be-
tween platforms and understand the types of information
traces used to establish these connections. We found that,
in the cross-platform research domain, the primary focus

103

104

105

106

107

10

&

109

110

111

112

113

11

IS

115

11

o

117

118

11

©

120

12

=

12

N

=
@
=t

-
=
S

IS
&

=
@

148

149

150

151

152

153

154

155

156

157

is on the connections between three types of platforms: so-
cial coding platforms (e.g., GitHub), social Q&A platforms
(e.g., StackOverflow), social media platforms (e.g., Twitter).
The connections between these platforms mainly rely on
information traces such as user personal info, technical info,
project/post/bug report metadata, interaction info.

RQ2: What are the major topics in cross-platform
studies?

The goal of this research question is to identify the key
issues addressed by cross-platform studies, which in turn
reveals the emerging trends in research topics and the mo-
tivations behind these studies. We found that cross-platform
research primarily focuses on five major themes: problem
classification and feature extraction, platform collaboration,
code reuse and evolution, user characterization, and cross-
platform data optimization. Among these, problem classifi-
cation and feature extraction is the most prominent research
area, with numerous studies exploring how to identify and
extract relevant features across multiple platforms to im-
prove the understanding of developer behavior and software
development processes.

RQ3: How to design experiments for cross-platform
studies?

The goal of this research question is to help researchers
quickly understand the datasets and research methods used
in related studies. We have collected and organized a total
of 40 publicly available datasets, along with some out-
dated datasets. Regarding research methods, the primary
approaches include Data-Driven Methods, Modeling & ML
Approaches, Tool Development and Implementation, and
Qualitative Studies. The findings highlight a dominance of
Data-Driven Methods, a significant trend of method integra-
tion, and the rise of intelligent methods exploration.

RQ4: What are the key challenges and research op-
portunities identified in the existing literature?

This research question aims to identify the key chal-
lenges and research opportunities highlighted in the existing
literature on cross-platform studies, with the aim of guiding
future research directions. Our findings indicate that several
common challenges persist across various research themes,
including subjective evaluation bias in manual data classifi-
cation, insufficient data source coverage, and inaccurate data
recognition. Moreover, research opportunities emphasize the
need to enhance the diversity of data sources, improve data
recognition accuracy, optimizing data classification meth-
ods, and clarifying user skill requirements.

The main contributions of this study are as follows:

e We conducted a systematic review of 69 papers pub-
lished between 2013 and 2024, providing valuable
guidance for researchers engaged in cross-platform
studies.

e We compiled a comprehensive list of 40 publicly
available datasets used in cross-platform research, in-
cluding detailed information such as dataset names,
scale, timeframes, access links, application.

S.Yao et al.: Preprint submitted to Elsevier

Page 2 of 31

158

160

161

163

=
o
by

H
o
2

-
=}
=

=
@
&

H
©
2

N
I
)

N
=
=y

Information and Software Technology

e Based on the opportunities and challenges identified
in existing cross-platform research, we propose six
potential future research directions and provide rec-
ommendations for developers, researchers, and ser-
vice/tool providers.

Every aspect of our research process is available for
replication at [17] and [18].

The remainder of this paper is structured as follows:
Section 2 provides an overview of the background. Section 3
outlines the study design. In Section 4, we present the results.
In Section 5, we discuss the key findings, propose a future
agenda for cross-platform studies, and provide practical rec-
ommendations. In Section 6, we analyze potential threats to
the validity of this survey. And finally we conclude the paper
in Section 7.

2. Background

With technology constantly advancing and social inter-
action methods diversifying, the engagement and interaction
strategies of software developers are undergoing signifi-
cant evolution. To comprehensively analyze this intricate
phenomenon, exploring the interaction dynamics between
social coding platforms (e.g., GitHub, GitLab), social media
platforms like Twitter, and social Q&A platforms like Stack-
Overflow is essential. In this section, we will outline the
development of open source platforms, and emphasize the
core value and broad significance of cross-platform research.

2.1. The Development of Open Source platforms

Since the emergence of the Git tool in 2005, a multitude
of social coding platforms based on Git have emerged,
such as GitHub and GitLab. These coding platforms have
attracted a large number of developers to participate in open
source contributions, supporting the continuous construc-
tion of large-scale software projects. To date, GitHub has
attracted over 100 million individual developers and 400
million organizations to participate, and has hosted over 420
million repositories [19].

As anovel paradigm, open source software development
has many advantages. On one hand, the active engagement
of numerous developers fuels rapid software iteration [20].
On the other hand, the extensive platform involvement ac-
celerates the discovery of vulnerabilities, thereby enhancing
software quality [21, 22]. Moreover, the adoption of reuse-
based software development methodology, coupled with the
contributions of platform volunteers, significantly reduces
both development and maintenance costs [23].

As the open source ecosystem flourishes, many mecha-
nisms have emerged to facilitate high-efficiency collabora-
tion among developers and to ensure the high-quality, iter-
ative evolution of software. For example, the issue tracking
and associated discussion forums, along with the milestone
feature, empower contributors of various kinds to articulate
their needs, engage in project-related dialogues, and set
incremental project goals. The introduction of the pull-based
model has allowed developers from the periphery to actively

212

21

@

214

21

@

21

o

217

21

=)

21

©

22

S

22

=

22

>

22

@

22

R

22

&

22

S

22

N

228

22

©

23

S

23

=1

23

o

23

@

23

r

236

237

238

23

©

24

S

24

bt

24;

]

24,

@

24

IS

245

246

24

kS

24

%

249

25|

S

25

2

252

25

@

25.

£

255

25

-\

257

258

259

260

26

2

262

26

@

264

265

participate in the coding process, with core team members
maintaining a quality checkpoint, thereby enhancing the
efficacy of collaborative development efforts [24]. On top
of this foundation, continuous integration systems have been
integrated to ensure contribution quality and streamline the
review process through automated testing [25]. Tools such
as GitHub Action and bot mechanisms are all part of an
automated approach to improving the efficiency and quality
of software development [26, 27]. Assignment [28], @men-
tion [29], and linking [30] mechanisms serve to connect
developers with software artifacts, enabling them to swiftly
identify information pertinent to their interests. platforms
like GitHub have opened up access to a vast amount of
data through APIs, giving rise to popular datasets such as
GHTorrent [31] and GHArchive 2, which have significantly
propelled research in the realm of open source development.

While a large number of tools and collaborative frame-
works are furnished by social coding platforms to facilitate
collaboration, the distinct emphases of different platforms,
along with the disparities in user experiences and customary
practices, lead to varied levels of participation and contribu-
tion across different platforms types. Taking StackOverflow
as an example, social coding platforms feature mechanisms
such as issues and discussions. However, many developers
and software users still prefer to pose questions related to
open-source software on StackOverflow. This preference
is partly attributed to the fact that a significant number
of issues on social coding platforms remain unanswered
and are subsequently closed. In contrast, StackOverflow is
maintained by dedicated individuals who provide timely
responses, ensuring that inquiries are resolved swiftly [4].
Similarly, although social coding platforms allow comment-
ing, they do not ensure the immediacy [32]. This is why
many developers prefer to use Discord.

Therefore, it is likely that OSS participants will leave
active traces across different types of platforms. The in-
terconnection between platforms, on one hand, can enrich
developer information, providing a comprehensive under-
standing of developers and enabling the construction of
personalized services. On the other hand, it allows for the
connection of various pieces of information related to open-
source software, leading to a thorough understanding of the
platform’s development.

Next, we will describe the core value of cross-platform
research in detail.

2.2. The Core Value of Cross-platform Research

In the current academic and practical landscape, cross-
platform research holds significant value and far-reaching
implications. Developers are not only active in social coding
platforms but also contribute and engage in activities on
platforms such as StackOverflow and Twitter. Consequently,
cross-platform research not only provides a more compre-
hensive perspective but also addresses challenges and limi-
tations specific to individual platforms.

Zhttps://www.gharchive.org/

S.Yao et al.: Preprint submitted to Elsevier

Page 3 of 31

266

267

268

N
@
S

N
@
=2

N
1
o

N
>
@

w
S
2

w
=3
)

w
=t
=

w
o

Information and Software Technology

For instance, in the analysis of user behavior, cross-
platform research offers several benefits. Firstly, cross-
platform research contributes to addressing the issue of data
sparsity. In a single platform, limited data may hinder the
acquisition of comprehensive and accurate information. For
instance, as highlighted in the work of Zhao et al.[33], user
activity data within a single platform is often limited, result-
ing in the sparsity of relationship networks. By integrating
data from multiple platforms, researchers can obtain richer
and more comprehensive user behavior and interaction in-
formation, thereby enhancing the accuracy and reliability of
studies. Secondly, cross-platform research helps overcome
individual and platform preference issues. Each platform
possesses unique cultures, rules, and interaction patterns,
potentially leading developers to exhibit different skills and
behaviors in one platform compared to others. For example,
Song et al.[2] points out that developers may demonstrate
limited skills in a particular platform due to personal pref-
erences or specific platform rules. Through cross-platform
research, a more holistic understanding of developers’ actual
skills and potential can be gained, mitigating biases resulting
from reliance on a single platform. Additionally, cross-
platform research contributes to addressing the cold start
problem. New users may lack sufficient historical data and
interaction records in a specific platform, rendering tradi-
tional recommendation and suggestion systems ineffective in
providing accurate information. For instance, Yuan et al.[34]
extensively explores the impact of the cold start problem in
recommendation systems.

By integrating data and information from multiple plat-
forms, more accurate and personalized recommendations
can be provided for new users, enhancing user experience
and satisfaction.

2.3. Summary

The rapid development of the open-source ecosystem
has attracted a significant number of developers. However,
due to varying focuses, differences in user experience, and
usage habits, other platforms, including social Q&A plat-
forms and social media platforms, are also widely utilized
by OSS participants, generating a wealth of behavioral data.

Cross-platform research not only offers a more compre-
hensive and accurate perspective on software development
but also addresses critical issues such as data sparsity, indi-
vidual and platform preferences, and the cold start problem
in developer engagement. As software developers continue
to participate and contribute across multiple platforms, the
significance and value of such research become increasingly
evident.

This study aims to conduct a comprehensive cross-
platform exploration of the open-source ecosystem. By
providing a systematic review of existing research, it shows
the interaction patterns and knowledge-sharing mechanisms
of developers across diverse platforms. Furthermore, it ex-
plores potential future research opportunities and challenges,
offering the academic platform and relevant researchers a
nuanced and in-depth perspective. This approach enables

322

323

324

32

&

326

32

N

328

32

S

330

33

=1

33

o

333

334

33!

&

33

&

33

4

338

33

<

34

S

34

a

34

S

34

@

34

IS

34!

&

346

34

3

34

%

349

350

w
&
2

352

354

35!

a

35

>

357

35

4

359

360

36

2

362

36!

@

364

36!

&

366

367

368

36

<

370

37

372

373

374

37!

G

them to more accurately capture and respond to the complex
and increasingly diversified software development ecosys-
tem.

3. Study Design

In this section, we followed the Systematic Literature
Review (SLR) methodology proposed by Kitchenham et
al. [35] and Petersen et al. [36] to construct the research
framework (as shown in Figure 1). The entire process is
divided into two main phases: Study Identification and Study
Selection. In the study identification phase, we first defined
the research questions (Step 1). Next, we selected major
databases, such as IEEE Xplore, ACM Digital Library, and
Scopus, as the primary sources for literature retrieval (Step
2). Subsequently, we designed an initial search string, which
was refined through pilot searches to determine the final
search string (Step 3). Using this search string, we retrieved
papers from the selected databases and removed duplicates
during the process (Step 4). In the study selection phase, we
applied predefined selection criteria to conduct a detailed
review of the initially retrieved papers (Step 5), focusing
on the titles, abstracts, and conclusions to exclude irrele-
vant or low-quality studies. At this stage, 161 papers were
retained and further subjected to a quality assessment (Step
6). Finally, 69 high-quality papers were selected. Data from
these papers were extracted and aligned with the research
questions, forming the basis for subsequent in-depth analysis
(Step 7).

3.1. Research questions

The primary objective of this study is to analyze the cur-
rent state of cross-platform research in the context of open
source.To achieve this goal, we first define cross-platform
as follows: Cross-platform refers to developer activities that
span heterogeneous technical infrastructures (e.g., GitHub
for code collaboration and Stack Overflow for knowledge
sharing) and meet the following two criteria:

Functional Heterogeneity: Platforms must serve dis-
tinct technical roles.

Data Linkability: Behaviors must be traceable across
platforms via explicit methods (e.g., user ID matching) or
implicit methods (e.g., semantic alignment).

Based on this definition, we propose the following re-
search question(s):

RQ1: How are different platforms connected in cross-
platform studies?

RQ2: What are the major topics in cross-platform stud-
ies?

RQ3: How to design experiments for cross-platform
studies?

RQ4: What are the key challenges and research opportu-
nities identified in the existing literature?

3.2. Database selection

We selected IEEE Xplore, ACM Digital Library, and
Scopus as the primary databases for this systematic literature
review (SLR), as these databases are widely used in the field

S.Yao et al.: Preprint submitted to Elsevier

Page 4 of 31

w
3
3

[
23
©

w
&

391

392

393

394

Information and Software Technology

Step 1
Research
questions

.

Step 2
Database >
selection

IEEE Xplore

Initial search

v

Search string

strin
determination 9

Pilot _
searches

Iterative search
string

\ 4

Duplicate
paper removal

ACM

| Springerl | Scopus I
{4 {

88 papers 162 papers 702 papers

Check titles,

» abstracts,
conclusions

v

Application of
exclusion
criteria

Total 69
papers

Quality
assessment

-

Step 7

Data extraction
and analysis

Study selection

161 papers

Figure 1: Research Framework

of computer science [37, 38, 39, 40]. During the literature
retrieval process, we constructed search strings based on the
search rules of each database, with a focus on the titles and
abstracts of the papers. This is because we believe that rele-
vant keywords are more likely to appear in these sections [41,
42], whereas full-text searches may generate a large amount
of irrelevant noise data. For example, terms related to cross-
platform research may be mentioned in contexts unrelated
to our core research questions, such as “security of software
packages across different operating systems”[43] and “cross-
platform engines”’[44].Additionally, we decided not to in-
clude Google Scholar and SpringerLink as search engines
for this review. First, Google Scholar includes a significant
number of technical reports and academic papers that have
not undergone peer review, raising concerns about their
quality and potentially compromising the reliability of the
literature selection process [45]. According to statistics, 50-
60% of articles in Google Scholar’s database originate from
online sources that lack peer review [46]. Second, although

395

396

397

30

@

399

400

40

2

402

403

404

40!

&

401

=y

407

40i

&

409

410

41

=y

41

)

SpringerLink’s advanced search functionality supports fil-
tering by keywords, authors, and publications, it does not
allow for limiting searches to titles and abstracts [47]. In our
pilot search [48] using preliminary search strings (see 3.3),
we found that SpringerLink yielded almost no articles di-
rectly relevant to the research topic. To ensure efficiency and
accuracy in the literature selection process, we ultimately
decided to exclude SpringerLink and Google Scholar.

3.3. Search string determination

To ensure that the search strings effectively retrieve liter-
ature relevant to the research objectives, we first conducted
pilot searches.

Based on our experience, we first extracted cross-platform
related keywords from several relevant papers, as shown in
Table 1. The keywords contain two parts: one pertaining to
open source software development, and the other related
to cross-platform interactions. For open source software
development, we find specific keywords commonly used
in this domain, such as “open source software”, “OSS”

S.Yao et al.: Preprint submitted to Elsevier

Page 5 of 31

IS
a
o

IS
o
=

Information and Software Technology

Table 1

Search Keywords.

Type Keywords Summary
“across platforms” [49], “across both platforms”
[50], ‘“across communities” [51], “across different % om

o “ " across * X's

communities”[52], ‘“across the two platforms” [53],

cross-platform " .

interactions across two platforms” [14]
“cross-network” [53], “cross-system” [54] “cross-X"
“multi-community” [52] “multi-X"
“multiple networks” [54] “multiple Xs”

open source

software development source projects” [57]

“open source software” [55, 56], “OSS” [55, 56], “open

“open source” OR "0OSS"

X stands for “platform” or synonyms, including community, network and system

and “open source projects’. We summarized the general
expression “open source” OR “OSS”. For cross-platform
interactions, we find four types of prefixes, namely “across”,
“cross”, “multi” and “multiple”. The keywords formed by
these prefixes are shown in Table 1. For each type, we
summarized the general expressions used for searching, i.e.,
“across * Xs”, “cross-X”, “multi-X”’ and “multiple X's”,
where X stands for “platform” or synonyms.

In processing keywords such as “cross-network™ and
“multi-community”, we removed the hyphens, as search
engines treat them as special characters and ignore them.
This approach aligns with the search guidelines of the major
databases, including ACM?, IEEE Xplore4, and Elsevier®.
Subsequently, we combined the keywords within each type
using OR logic operators and linked different types us-
ing AND logic operators, resulting in the following search
string:

33

Initial Search String. ((“across * communities” OR
“across * platforms” OR “across * networks” OR
“across * systems”) OR (“cross community” OR
“cross platform” OR “cross network” OR “cross
system”) OR (“multi community” OR “multi plat-
form” OR “multi network” OR “multi system”) OR
(“multiple communities” OR “multiple platforms”
OR “multiple networks” OR “multiple systems”))
AND (“open source” OR “OSS”)

. J

During the pilot search process, we found that many
papers on cross-platform research did not explicitly use
keywords such as ‘cross-platform’ in their titles and ab-
stracts. Instead, these papers often mentioned specific plat-
form names, such as “GitHub” and “StackOverflow” [58].
This phenomenon made the process of identifying relevant
papers through keyword searches more complex, as we were
unable to directly identify which platforms were the primary
focus of the research. To address the issues encountered

3https://dl.acm.org/search/advanced

4https://ieeexplore.ieee,org/Xplorehelp/searching—ieee—xplore/
search-tips

5https ://service.elsevier.com/app/answers/detail/a_id/34325/

441

442

443

44

IS

445

446

447

448

44

©

45

<)

45

452

453

454

45!

a

45

>

45

<

458

45

©

460

46

2

46

)

463

46

g

465

461

>

46

=3

46!

o

47

=]

47

=

472

47!

@

475

476

47,

=

47/

©

480

48

2

during the retrieval process, we first utilized the initial search
string identified earlier and conducted the search. Subse-
quently, we applied Named Entity Recognition (NER) to
the titles and abstracts of the retrieved papers to extract the
key platform names mentioned. Based on these platform
names, we further optimized the search string to enhance
the accuracy of selecting relevant studies. The pilot search
results also indicated that very few relevant studies had been
published prior to 2013 (<2%) and that their content was
unrelated to our research topic. Therefore, we restricted the
time frame of this review to the period from 2013 to 2024.

We completed the initial literature search on December
15, 2024, focusing primarily on the fields of computer sci-
ence and software engineering. A total of 1,102 papers were
retrieved, with 119 from the ACM Digital Library, 231 from
IEEE Xplore, and 752 from Scopus. To identify key infor-
mation related to platforms, we utilized a pre-trained model
(en_core_web_sm) to perform Named Entity Recognition
(NER) on the titles and abstracts of the collected papers. This
process resulted in the extraction of 11,279 entities. After
a manual review of the extracted results, we identified 19
commonly mentioned platform-related entities, including:
GitHub, GitLab, BitBucket, Stack Overflow, Quora, Hack-
erNews, Reddit, Jenkins, Gitter, Telegram, WhatsApp, Face-
book, Instagram, YouTube, Twitter, Slack, Discord, DEV,
and LinkedIn. These platform names appeared frequently in
the reviewed literature and are closely aligned with the focus
of our research. Given that the primary goal of this study
is to explore open source oriented cross-platform research,
we specifically focused on platforms associated with open-
source project hosting. Among the 19 identified platforms,
GitHub, GitLab, and BitBucket are the primary platforms
currently used for hosting open-source projects. Based on
this objective, we optimized our search strategy, as shown
below. We used the AND operator to combine these open-
source project hosting platforms (e.g., GitHub) with other
frequently mentioned platforms (e.g., Stack Overflow) in the
literature. At the same time, the OR operator was used to link
different platforms, thereby expanding the search scope. The
specific search strings used in each database are detailed in
our open-source project [17].

S.Yao et al.: Preprint submitted to Elsevier

Page 6 of 31

=

Information and Software Technology

OR “Discord” OR “DEV” OR "“LinkedIn"))
OR

OR “DEV" OR *“LinkedIn"))
OR

OR “DEV" OR "“LinkedIn™))

Iterative Search String. (“GitHub” AND (“Stack Overflow” OR “Quora” OR “HackerNews” OR “Reddit” OR "Jenkins"”
OR “Gitter” OR “Telegram” OR “WhatsApp" OR “Facebook” OR “Instagram” OR “YouTube"” OR “Twitter” OR “Slack”

(“GitLab” AND (“Stack Overflow” OR “Quora” OR “HackerNews” OR “Reddit” OR “Jenkins” OR “Gitter" OR
“Telegram” OR “WhatsApp” OR “Facebook” OR “Instagram” OR “YouTube" OR “Twitter” OR “Slack” OR “Discord"

(“BitBucket” AND (“Stack Overflow” OR “Quora” OR “HackerNews" OR “Reddit” OR *“Jenkins” OR “Gitter" OR
“Telegram” OR “WhatsApp” OR “Facebook” OR “Instagram” OR “YouTube” OR “Twitter” OR “Slack” OR *“Discord"”

Table 2
Papers Screening Statistics.

Database Preliminary Screening Count Count After Deduplication
ACM 183 88

IEEE Xplore 273 162

Scopus 962 702

Total Preliminary Screened Papers 1,418

Total Count After Deduplication 952

3.4. Paper selection

We completed the second round of paper retrieval on
December 16, 2024, using iterative search strings to focus
on papers in the fields of computer science and software
engineering published between 2013 and the current cut-
off date. It is worth noting that the time range is based
on the indexing dates of the databases, which means the
results may include a small number of papers that have been
archived in advance but not yet officially published. At this
stage, we initially screened a total of 1,418 papers from the
databases, as detailed in Table 2. Subsequently, we imported
the BibTeX files exported from the ACM Digital Library,
IEEE Xplore, and Scopus into the Parsifal platform®, which
provides built-in functionality for duplicate removal. After
removing duplicates, 952 papers were retained, including 88
from the ACM Digital Library, 162 from IEEE Xplore, and
702 from Scopus.

3.5. Selection Criteria

Next, we applied a set of exclusion criteria to screen all
studies collected through the search strategy. These criteria
took into account various aspects of the papers, including
their language, research completeness, and relevance. The
specific exclusion criteria (EC) are detailed in Table 3.

In the process of screening papers, we used a portion of
the sample data to assess the consistency between different
authors in paper evaluation. With a 95% confidence interval
and a 5% margin of error[59], we determined a sample size
of 274 papers from a total of 952 papers. The sample size
was calculated using the Sample Size Calculator ’. These
274 papers were independently screened by the first two

6ht‘cps://parsif. al/
7https ://www. surveymonkey .com/mp/sample-size-calculator/

@
2
o

o
a
©

o1
o
=

@
R
@

@
0
N

o
@
S

o
@<
=t

o
@®
o

535

536

537

538

539

540

541

542

543

authors. Upon completion of the screening, we calculated
the Kappa coefficient to evaluate the consistency between
the two authors. The Kappa coefficient was 0.887, indicating
the “almost perfect” level (0.81-1) of agreement[60]. The
authors held a meeting to discuss the different results and
reached a consensus on the final decision. The subsequent
paper screening was uniformly handled by the first author.
Ultimately, we identified 161 papers that met our study
criteria.

3.6. Quality Assessment

Next, we adopted the quality assessment criteria es-
tablished by Yang et al. [61, 62] and made appropriate
adjustments based on the specific research questions of
this study, ensuring that each paper effectively addresses
our research objectives. The detailed Quality Assessment
Criteria (QAC) are presented in the table below. Each paper
was evaluated based on five quality assessment questions,
with answers categorized into three levels: “Yes” (1 point),
indicating full compliance with the criteria; “Partial” (0.5
points), indicating partial compliance; and “No” (0 points),
indicating non-compliance. Only studies with a total score of
4 points or higher were included in the analysis. The quality
assessment was conducted independently by the first author,
with final review and verification by the second author.

When developing the quality assessment criteria, we
prioritized the ranking of publication venues to ensure the
quality of the selected papers. Specifically, for conference
papers, we referred to the CORE ranking [63], which is
a system specifically designed to evaluate the impact of
academic conferences [47]. It is important to note that the
CORE ranking does not provide rankings for journals [64].
Therefore, for journal papers, we utilized the SJIR (Scimago

S.Yao et al.: Preprint submitted to Elsevier

Page 7 of 31

544

o
a
S

o
a
2

o
a
R

Information and Software Technology

Table 3
Exclusion Criteria.

Criteria

1. The paper was not written in English.

2. The paper is a summary of a conference/workshop or is a short paper (fewer than 4 pages), and is not a complete research

study.

3. The paper is a duplicate of previously included research (due to name case differences, minor modifications, etc.).

4. The paper is unrelated to open-source projects.

5. The paper primarily focuses on a single platform (e.g., GitHub) or analyzes platforms in isolation without considering cross-

platform.
Table 4 ss 3.7. Data extraction and analysis
Quality Assessment Questions 564 We strictly followed the systematic literature review
N i A Lovel s6s methodology proposed by Kitchenham et al. [67] and con-
o 9“3 ity Assessment Ques- evels se6 ducted a structured data extraction based on the norma-
tion so7 tive framework of this approach for addressing four re-
QA1 Is the study published in a Yes /No / s search questions. Specifically, for the first research question
high-reputation venue? Partial s0 (RQ1), we extracted the primary platforms and the con-
Does the . St”.dy propose a Yes / No / s70 nection mechanisms from the abstract (which, according
QA2 Cllear mOtlvat'°n7 for - cross- Partial sn to the guidelines, should clearly state the research topic)
platform research: s and the data collection section (which requires a detailed
Does the study clearly pro- Yes / No / record of the methodological implementation). For the sec-
QA3 pose the connections way be- Partial o ’ g pieme :
tween platforms? s+ ond research question (RQ2), we identified the core research
Does the study clearly design s7s themes by examining both the abstract and the research ques-
QA4 and describe experimental se- Yes / No / s76 tions section (which, as per the guidelines, should clearly de-
tups, including datasets and Partial s77 fine the research objectives). In addressing the third research
methods used ? s7s question (RQ3), we extracted dataset metadata and research
Does the study effectively dis- so design methods from the data collection and methodology
QA5 cuss f“tEre” research ZPII_DO'th- Ye;/ N(I) / se0 sections (which are required to describe technical param-
nities, challenges, and limita- artia

tions?

Journal Rank) as the ranking criterion [65]. During the
selection process, only journal papers categorized as SJR

s Q1 [66] and conference papers ranked as A or A* [47] were

included to ensure the high quality of the research.

Among the 161 papers initially screened, 58 conference
papers were rated as A or A*, and 35 journal papers were
categorized as Q1. Subsequently, we conducted a detailed
review of each paper to evaluate whether it explicitly ar-
ticulated the motivation for cross-platform research, clearly
described the relationships or connections between plat-
forms, and provided a well-defined and detailed experi-
mental design, including datasets and methodologies used.
Additionally, we examined whether the studies mentioned
their limitations, challenges, and potential directions for
future research. Through this process, a total of 69 papers
(42.9% of the total) achieved a score of 3.5 or higher. For the
lower-quality studies that were excluded, analysis revealed
that the primary issue was the failure to explicitly document
the relationships or connections between platforms (QA3).

a
©
2

o
©
@

o
2

60!

N}

o
=3
=y

607

eters). Finally, for the fourth research question (RQ4), we
focused on the discussion, validity threats, and conclusion
sections (which, as per the guidelines, should systemati-
cally summarize research limitations and future directions
in the field) to analyze potential opportunities and chal-
lenges, establishing connections between the findings and
broader implications for future research. At the same time,
we validated this method by performing full-text coding
on a randomly selected 20% of the papers, confirming that
the implicit limitations in the “Results” section had been
explicitly addressed in the “Discussion” section. Therefore,
independent coding of the results is considered redundant.
Additionally, we validated this approach by performing full-
text coding on a randomly selected 20% of the papers,
confirming that implicit limitations in the “results” section
were explicitly mentioned in the “discussion” or “conclusion
and future work”™ section . Therefore, independent coding of
the results was deemed redundant.

We used the open card sorting method as described by
Zimmermann et al.[68]. To start, we created descriptive
cards based on the content extracted from each research
question. Then, we classified the cards based on their simi-
larity in content, creating new categories if no similar ones
were found. This entire process was independently carried
out by the first two authors and was assessed for consistency
using the Kappa coefficient (0.823), which indicated a high
level of agreement. Any disagreements found during the

S.Yao et al.: Preprint submitted to Elsevier

Page 8 of 31

Information and Software Technology

Table 5

Data extraction for Research Questions.

RQ Data Extraction

RQ1 Abstract, Data collection(connection ways)

RQ2 Abstract, Research questions

RQ3 Data collection(datasets names, descriptions, access links), methodology
RQ4 Discussion, threats to validity, conclusion and future work

63.6%

100.0% 6.2%
104

625% 55.6%

100.0% 50.0%

50.0%

36.4%

a4.4%

Number of Papers

100.0% 60.0%

40.0%

Number of Papers Published

100.0% 100.0%

B
%

8 o Ry 3 o
X K § K K
b $ $ $ $

2014 2015 2017 2018 2019 2020 2021 2022 2023 2024 2025

e Figure 3: Distribution of Journal and Conference Papers by

Ye
Figure 2: Number of Papers Published per Year ear

on the analysis of the figure, during the initial phase of the
research field (2014-2017), conference papers overwhelm-
ingly dominated, while journal papers were almost absent.
This indicates that the field was still in its early develop-
mental stage, with researchers favoring conferences as the
primary platform for disseminating findings quickly. Since
2018, the number of journal papers has gradually increased,
reaching 40%, signaling that the research field was gaining

assessment were resolved through discussion to reach a con-
sensus [68, 69]. Finally, all authors reached an agreement on
the categories during a collective meeting. These categories
form the foundation for our subsequent comprehensive anal-
ysis of the research questions.

o

=3

@
=
@
&

o
2
o
2
a

4. Results o4

IS

o
=
=)

o
0
=

o
]
N

o
o
by

In this section, we first conducted a general analysis of
the number of papers published annually, their publication
locations, and other related factors. Subsequently, we per-
formed a detailed analysis based on the research questions
(RQ1 to RQ4).

4.1. General Analysis

Figure 2 shows the number of papers published annually
from 2014 to 2025. As shown in the figure, the period from
2014 to 2016 represents the initial stage of the research, with
relatively few publications. Starting in 2017, the number
of publications began to increase significantly, reaching its

o
iy
3

o
&
S

o
o
2

maturity.

broader recognition within the academic community. By
2020, the proportion of journal papers reached 36.4%. Dur-
ing the period 2021-2024, the proportion of journal papers
further stabilized at 37.5%-53.8%. This trend demonstrates
a shift in research focus from rapid dissemination through
conference presentations to formal publication in journals.
It also reflects a deepening of research content and the
progression of the field toward greater systematization and

Figures 4 and 5 present the main publication venues for
the collected journal and conference papers. The research
findings are primarily concentrated in high-impact journals

such as ESE and TSE, as well as in top-tier conferences
like ICSE and MSR. This indicates that the research efforts
are highly focused on the field of software engineering. By
analyzing the characteristics of articles published in these
1 journals and conferences, it is evident that researchers have
o2 conducted in-depth explorations on topics such as method-
e 0logical innovation, tool development, and the quality of
o4 Open-source software development.

first peak in 2020. Between 2021 and 2023, the number of
6 publications stabilized, indicating that the research in this
field had entered a relatively mature stage. In 2024, the
s number of publications reached a historical high, while the
data for 2025 remains incomplete as the year has only just
s begun. These findings indicate that cross-platform research
has become increasingly popular over the past decade and
has gradually matured into a significant research area.

This study collected a total of 69 papers published in var-
ious conferences and journals, including 25 journal papers,
accounting for 36.2%. As shown in Figure 3, the distribution
of journal and conference papers by year is presented. Based

627

o
=
S

629

631

632

633

634

63

&

63

&

S.Yao et al.: Preprint submitted to Elsevier Page 9 of 31

Information and Software Technology

Table 6
Platform Types and Names
Platform Type Platform Name
Social coding platforms [70] Github [70]; GitLab [71]
Social Q&A platforms [72] StackOverflow [72]; Stack Exchange [73]
Social media platforms [74] DEV [75]; Gitter [76]; Twitter [77]; Reddit [77]; Hacker News, Forrst [16];

Reactiflux, Facebook, Slack, IRC (Internet Relay Chat), Mailing List [78];
Discord [79]; Google+ [74]; Security forums: Garage4Hackers, Offensive
Platform, RaidForums, Multiplayer Game Hacking, Hack Forums [74]

issue tracking platforms [10] Bugzilla [10]

Continuous integration platforms [80] Jenkins [80]

o

o0 Platforms are categorized based on their core functionality
o and primary usage scenarios.

681 The table includes the following categories:

682 Social coding platforms: These platforms are primarily
3 used for collaborative software development and version
s control. Their core functionalities include code sharing, col-
laborative development practices, code review, and project
s @ ss management [70, 71]. Represented by platforms such as
< ss7 GitHub and GitLab, they leverage distributed version control
ess Systems (e.g., Git) to support team members in efficiently
30 sharing code and collaborating on development.

690 Social Q&A platforms: These platforms focus on knowl-
s01 edge sharing through a question-and-answer format. Their
2 core goal is to connect users with questions to experts or
s3 members who can provide answers, thereby collaboratively
s Solving complex technical challenges [81]. Represented by
eos platforms such as StackOverflow and Stack Exchange, they
* s not only offer efficient solutions to technical problems but
also foster the dissemination of technical knowledge through
. 08 a platform-driven model [82].

699 Social media platforms: The core functionality of so-
70 cial media platforms is to support team communication,
1 collaboration, and information sharing, playing a crucial
e 72 role in distributed open-source software projects. These
703 platforms provide teams with convenient communication
704 channels to facilitate task discussions, problem-solving, and
705 project management [78]. Represented by platforms such
06 as Twitter, Slack, Gitter, and Facebook, they significantly
707 enhance the visibility of open-source projects through their
o 4.2. RQ1: How are different platforms connected . proad audience base and efficient information sharing [83,
666 in cross-platform studies? 700 6], while also promoting the identification of technical issues
667 Cross-platform research focuses on exploring the inter- -, and the growth of platforms [74].

s actions and connections between different types of online Issue tracking platforms: The core functionality of
soo platforms. By analyzing the ways in which platforms are ., issue tracking platforms is to record, assign, and track the
sr0 connected, this type of research provides a fresh perspective ., lifecycle of issues, providing transparent process manage-
on for understanding cross-platform collaboration patterns and ., ment to enhance project manageability and task traceability.
o2 knowledge dissemination. This section discusses in detail ;.5 A typical example is Bugzilla [10, 84].

o3 the main types of platforms involved in cross-platform re- ;,; Continuous integration platforms: The core function-
o+ search, as well as the key traces used to establish connections ;; ality of continuous integration platforms is to support end-
o5 between platforms. 7 to-end management of code integration, testing, and deploy-
70 ment through automation tools, significantly enhancing the
720 efficiency and quality of software development. Represented
by platforms such as Jenkins, these tools can automatically
72 pull code from GitHub once it is submitted, build it, and

Number of Papers
~ w IS “

68!

a

°

2

Figure 4: Number of Papers Published in Journals

8 69

N

Number of Papers

Figure 5: Number of Papers Published in Conferences

@

oo 4.2.1. Platform Types and Collected Traces
677 Table 6 provides an overview of the platform types and
o7s specific platform names involved in cross-platform studies.

~
=

S.Yao et al.: Preprint submitted to Elsevier Page 10 of 31

<
N
X

~
R
-3

~
N
k5

Information and Software Technology

Table 7
Type of connection between platforms.

Type

Related Study

Count(%)

[86, 87, 88, 89, 71, 90, 91, 92, 13, 93, 94, 95, 96,
97, 98, 99, 100, 73, 70, 101, 102, 103, 103, 104,

Social coding platforms—social Q&A platforms

105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

50(72.5%)

15, 115, 116, 115, 72, 117, 118, 119, 75, 120, 50,
121, 122, 14, 123, 124]

Social coding platforms—social media platforms

Social coding platforms—social Q&A platforms—
Issue tracking platforms

Social coding platforms—Continuous integration
platforms

[10, 134]

(80]

[16, 78, 77, 125, 126, 127, 128, 129, 79, 130, 83,
131, 132, 6, 133, 74]

16(23.2%)
2(2.9%)

1(1.4%)

execute automated testing and deployment tasks to ensure
code quality and system stability [85, 80].

Table 7 summarizes the distribution of different types
of connections in cross-platform research. Among them,
the connection between Social coding platforms and social
Q&A platforms constitutes the largest proportion (72.5%),
followed by the connection between Social coding platforms
and social media platforms, which accounts for 23.2%.

However, the realization of these connections relies on
the data traces left by users’ activities across different plat-
forms. To further elucidate the types of information gener-
ated by different platforms and their roles in cross-platform
connections, Table 8 provides a systematic summary of
the data traces on major platforms and identifies which
traces play a key role in the construction of cross-platform
connections.

Research indicates that cross-platform connection meth-
ods primarily rely on the following types of information:
user personal info, technical info, metadata of projects/posts/
bug reports, and interaction info. Among these, some are
explicit, while others are implicit. For instance, in user
matching, explicit information is typically used to estab-
lish user connections through direct identifiers. Examples
include email addresses [13, 101, 103, 106, 130], externally
shared links between platforms (e.g., URLs)[132], or precise
usernames[126, 128], which can directly identifies the same
user across different platforms. Implicit information, on the
other hand, involves inferring potential user associations by
analyzing the similarity between usernames[74, 6]. Tech-
niques such as string similarity calculations or applying edit
distance algorithms can be used to deduce the correspond-
ing user identities across platforms. Furthermore, cross-
platform research heavily relies on key informational traces
such as code snippets (e.g., projects, posts)[90, 94, 97, 103,
111, 115, 119], tags or keywords (e.g., project tags, issue
tracking labels, tweets)[90, 91, 93, 98, 105, 77], and external
links between platforms [78, 95, 79] to establish connections
across platforms.

By leveraging explicit or implicit linkages, it is possible
to trace the complete pathway of developers from knowl-
edge sharing (e.g., Stack Overflow) to code implementation

764

765

766

76

2

76

&

769

770

771

772

773

74

77!

a

=

7

7

N

@

77

77

)

78

S

78

bt

782

78!

@

78:

B

78!

a

78

&

78

2

78

<1

78

o

79

S

79

2

79:

N}

79

@

79:

b

(e.g., GitHub). Cross-platform data associations, such as
the co-occurrence of GitHub issues and Stack Overflow
discussions, can help identify development bottlenecks. Fur-
thermore, linking community interaction data from plat-
forms like Reddit and Twitter with development activities
on GitHub or Gitter enables the quantification of social
influence on the evolution of open-source projects.

Finding 1. Cross-platform research primarily fo-
cuses on two types of connections: social coding
platforms—social Q&A platforms (72.5%) and social
coding platforms—social media platforms (23.2%).
The informational traces that establish these con-
nections are primarily categorized into user personal
info, technical info, metadata of projects/posts/bug
reports, and interaction info.

4.3. RQ2: What are the major topics in
cross-platform studies?

Using the systematic research topic analysis method
proposed in [135], we conducted a classification of 69 cross-
platform studies. Each category includes the number of
related studies, the percentage they represent, and relevant
references, as detailed in Table 9. The classification results
indicate that the major topics in cross-platform research
include problem classification and feature extraction (25
studies, 36.2%), platform collaboration (18 studies, 26.1%),
code reuse and evolution (11 studies, 15.9%), user charac-
terization (11 studies, 15.9%), and cross-platform data opti-
mization (4 studies, 5.8%). We further visualized the annual
distribution of publications across different research topics
(see Figure 6). The results reveal that the topic of problem
classification and feature extraction has shown a significant
upward trend in recent years. This trend reflects that, with the
rapid development of platforms and the continuous growth
of data generated, an increasing number of researchers are
exploring data from various platforms to gain a compre-
hensive understanding of complex problems. Furthermore,
this highlights the critical importance of data integration
and collaborative analysis in cross-platform research. The

S.Yao et al.: Preprint submitted to Elsevier

Page 11 of 31

Table 8

Information and Software Technology

Key Information Types and Cross-Platform Traces

Platform Types

Information Categories

Key Traces for Cross-Platform Connec-
tions

Description

Social cod-
ing/Q&A /media
platforms

User Personal Info:

(username, email addresses,
external platform links

MD5 hash value of users’ email addresses [13,
101, 103, 106, 130]; username[126, 128, 74, 6];
external platform links [132]

Identifies the same user
across platforms

Social coding
platforms(e.g.,

Technical Info:

(commit messages, bug id,
code, push and pull re-
quests)

Keywords of commit messages [134, 105, 10];
Bug ID [134, 10]; code [90, 87, 96, 10, 94, 97,
103, 110, 111, 115, 119, 14, 80, 100]; push/pull
requests [88, 91, 128, 15, 123]

Records implementation
details; can link to bug
id; compares code snip-
pets with Q&A platforms

Project Metadata:
(Project name, description,
tags, creation/last commit

Keywords of projects’ descriptions and names
[88, 77, 73, 95, 78, 88]; projects’ language[86,
105, 123] projects’ tags [90, 91, 93, 98, 105, 95];

Describes basic attributes

GitHub) fi?)t:/’tela?gurae%:a’seorl%:‘anr:z?]_ readme / wiki and associated URLs [78, 95, 79]
o ' ' " and Wiki files [78]

wiki, readme)

Interaction Info:

(Issues, Stack Overflow links Issues labels and keywords [88, 91, 128, 15, Can reference Q&A dis-

in issues, discussion, com- 123, 107, 71, 92, 113, 115]; discussion keywords .

ments, forks, stars, contrib- [71, 107]; Stack Overflow links in issue [89] cussions

utors, followship)

(Téfj’:)’c"" Info: Code [88, 90, 94, 97, 103, 111, 115, 119, 122, 14] Zrc‘;:’r':::l dz)t‘:”";p'es and

] P"ff Me_tadfga't_tl body, Posttags[86,87,71,00,01,02,03,08, 73,105, L .ol

Social Q&A (submission ID, title, body, 1qg"114 35 115, 7, 120, 123, 88]; Topic [134]; | nematic fields/links may
platforms (e.g., S eommient® 1285 post keywords [95, 96, 104, 107, 110, 110, 113, Pon* code ohos: I
StackOverrow) status, release date, change 117]; change history [10] sues, or project docs.

history)

Interaction Info:

(Voting types: External platform links [70, 120, 116] Link fields used to cite

upvote/downvote, external external resources

platform links)

Interaction Info:

(Tweets/posts, Twitter: Keywords of tweets, retweets, quoted

retweets/shares, quoted tweets, replies [125, 77]; links in posts/tweets Shows user interactions
Social media tweets, replies/comments, [125, 75, 83, 6]; issue report links [134, 127]; and potential impact
platforms (e.g., Like/Favorite, link fields, chatroom project name [127, 121]

Twitter) chat logs, etc.)
. . Marks topic content, can
Post Metadata: Twitter: Hashtags of tweets, other platforms: match projects or Q&A
(Posts, tweets) post keywords [125, 77] prol
posts
Issue tracking BELLg ﬁ%)osrﬁ‘?nl\r:;tadj:iﬁ : Describes issue context,
platforms (e.g., oue Y P Bug ID [134, 10] linking Q&A or commit
Bu ziIIa) tion, product, component, message
g status)

705 following sections will provide a detailed discussion of the

796

797

798

799

800

801

802

803

core aspects of each topic.

ss GitHub. By integrating information from multiple platforms,
s0s researchers can obtain more comprehensive data support,
s0s enabling a deeper analysis of the specific problems devel-

4.3.1. Problem Classification and Feature Extraction ., opers face and potential solutions.

Problem classification and feature extraction is a key g,

The majority of research is concentrated on software

topic in cross-platform research, as it effectively addresses . defect repair. Due to the lack of standardized defect bench-
the limitations of single platforms in providing technical ,, marks, evaluating the performance of related techniques

information and examples. For instance, developers often
seek solutions to specific issues on Stack Overflow and

sn becomes exceedingly complex. To address this challenge,
s12 researchers have proposed fine-grained defect classification

upload optimized code to code hosting platforms such as

S.Yao et al.: Preprint submitted to Elsevier

Page 12 of 31

Information and Software Technology

Table 9
Research Topics, Subtopics, and Related Studies
Research Topic Subtopics (“—" represents “support”) Count Related Study
(%)
Software bug fixes[105, 92, 123, 87, 134, 112, 113, 88, 114] 9(13%)
API[96, 86, 120] 3(4.3%)
AutoML[104] 1(1.4%)
GitHub Actions[115] 1(1.4%)
GitHub Copilot[107] 1(1.4%)
WebAssembly[117] 1(1.4%)
Security patches[10] 1(1.4%)
Programming language security[91] 1(1.4%) [134, 101, 115, 96,
Problem Machine learning management[71] 1(1.4%) 102, 86, 92, 73, 105,
Classification and Value co-loss[102] 1(1.4%) é;)?'léléélé:; 11%(31'
Feature Extraction Architectural decisions[95] 1(1.4%) 71: 11’7, 16, 1'14, 9'1,
Open-source project management[101] 1(1.4%) 95, 113]
Quantum software engineering[73] 1(1.4%)
Deep learning frameworks[15] 1(1.4%)
Emerging programming languages[98] 1(1.4%)

Continuous integration platforms — Social coding 1(1.4%)
platforms[80] [127, 130, 78, 83, 80,

3(43%) 75 133,16, 6, 100,

Cross-Platform collaboration and mutual development[118,
110, 118, 77, 111,

77, 125]
Platform b , .. 128 103, 79, 125]
Collaboration Social coding platforms — Social Q&A platforms[103] 1(1.4%)
Social media platforms — Social coding platforms[127, 130, 10(14.5%)
78, 83, 75, 133, 16, 6, 128, 79]
Social Q&A platforms — Social coding platforms[100, 110, 3(4.3%)
111]
Evolution of reused code snippets[119, 89, 14] 3(4.3%)
Reuse behavior for code snippets[122, 90, 116] 3(4.3%) [119, 14, 122, 13, 93,
Code R d Origin of reused code snippets[93] 1(1.4%) 90, 94, 116, 89, 97,
ode Reuse an . . 0 115
Evolution Adaptation of reused code snippets[94, 115] 2(2.9%)]
Attribution of reused code snippets[13, 97] 2(2.9%)
U User structure analysis[132] 1(1.4%) [131, 132, 106, 103,
Ser o User identity recognition[70, 74] 2(2.9%) 70, 50, 74, 72, 126,
Characterization
User behavior analysis[131, 109] 2(2.9%) 124, 109]
User profiling assessment[106, 103, 50, 72, 126, 124] 6(8.7%)
c latf b Topic modeling optimization[108] 1(1.4%)
-plat t
or°§5 pratiorm 2ata Semantic matching for Q&A[129] 1(1.4%) [108, 121, 99, 129]
ptimization
Types of fine-grained information traces[121] 1(1.4%)
Title completion and optimization[99] 1(1.4%)

s13 frameworks and conducted in-depth analyses of repair pat- s:s become crucial for ensuring software quality and main-
s terns, providing strong theoretical support for defect re- s tainability. For instance, numerous studies focus on de-
s15 pair research. With the widespread application of artificial =0 ployment challenges associated with deep learning frame-
a6 intelligence (AI) technologies in software systems, under- sz works such as TensorFlow, PyTorch, and Keras[92, 105,
s1i7 standing the defect characteristics of Al-based systems has s 123, 113, 87, 112]. Additionally, researchers have explored
a3 critical defect issues in other areas, such as actor-based
324 concurrent development[88] and Android runtime permis-
25 sion management[114]. In terms of repair methods, relevant

2

S.Yao et al.: Preprint submitted to Elsevier Page 13 of 31

0
@
w

3
=
&

=)
a
2

=)
o
-\

@
&
2

©
S
@

Information and Software Technology

Research Topic
Code Reuse and
12 == Evolution
Cross-platform
Data
Optimization
10 Multi-source
W |ntegration

8 User Characteri
zation

Number of Publications

2014
2015
2017
2018
2019
2020
2021
2022
2023
2024
2025

)
8

Figure 6: Publications by Year and Research Topic

studies have leveraged historical defect data and utilized
automated techniques to generate repair patches, thereby
achieving automated defect repair[134].

Use of API. Subsequently, the use of APIs represents
the second most studied area. APIs are crucial for enabling
developers to access functionalities and third-party libraries

868

869

880

=3
<1
=2

887

888

and are widely adopted in modern software development[120].ss
However, the complexity and diversity of software systems[86}

as well as ambiguities in API method names[96], pose
challenges in API usage. Researchers have leveraged cross-
platform data to address these issues, such as helping devel-
opers efficiently locate relevant code examples[96], analyz-
ing misuse patterns[86], and exploring challenges associated
with specific frameworks like Reactive Programming[120].
These studies highlight the importance of improving API
usability and support systems.

Additionally, researchers have focused on key issues
across a wide range of fields, from the application of
emerging technologies to concerns related to security and
reliability. In the application of emerging technologies and
tools, such as GitHub Copilot, GitHub Actions, WebAssem-
bly, quantum computing software (QSE), and new pro-
gramming languages like Swift, Go, and Rust, studies have
revealed numerous technical challenges that developers
face when using these technologies[115, 107, 117]. In
the fields of machine learning and artificial intelligence,
research has primarily focused on areas such as automated
machine learning[104], deep learning frameworks[15], ma-
chine learning asset management[71], and key issues in the
development of Al systems[95]. In terms of security and re-
liability, Croft et al.[91] analyzed the potential security risks
associated with different programming languages. In the
area of platform building, to understand the key factors that
attract high-skilled developers to continuously contribute,
relevant studies have examined the management practices
of open-source projects and discussed value decomposition
within online collaborative networks (OCN) to identify
potential influencing factors[101, 102].

In summary, these studies highlight the extensive appli-
cation of problem classification and feature extraction and
provide significant references for understanding the relevant
issues.

89

2

892

893

894

895

896

897

898

899

900

90,

2

90:

N}

903

904

905

906

90

5

90:

&

90¢

c

910

911

91

)

913

914

915

916

917

918

919

920

92

=

922

92!

@

924

4.3.2. Platform Collaboration

Platform collaboration emphasizing the interdependence
and cooperative development between different platforms.
This theme explores how one platform supports the function-
ality and growth of another, as well as the reciprocal benefits
derived from such collaboration.

Platform-Supported Development. Platform-supported
development refers to practices that enhance platform ef-
ficiency and quality through collaborative interactions. A
notable example of this is the support that social media
platforms provide to social coding platforms. For instance,
the rapid adoption of instant messaging tools such as Gitter
and Slack is reflected not only in the significant increase
in the number of README files linking to these tools[79],
but also in their crucial role in facilitating distributed devel-
opment collaboration[128]. On one hand, researchers have
widely explored the impact of social media on software de-
velopment, covering areas such as issue management[127],
the GitHub Sponsors funding model[83], communication
among developers[16], and attracting contributors[6, 128].
On the other hand, studies also focus on how develop-
ers utilize social media during collaborative development
processes[78, 75, 133, 79]. Furthermore, in recent years,
research has begun to explore how to recommend more
relevant social media content to developers[130].

Additionally, social Q&A platforms play an important
role in supporting the development of social coding plat-
forms. Extensive research has utilized the knowledge from
Stack Overflow to supplement and optimize searches on
GitHub, significantly improving the quality of recommen-
dations and searches[100, 110, 111]. For example, by ex-
tending the content from Stack Overflow to generate high-
quality API sequences[100, 110]. On the other hand, studies
have found that social coding platforms also provide support
to social Q&A platforms. For instance, API usage patterns
mined from GitHub projects can be used to detect improper
API usage in Stack Overflow posts[103]. Moreover, continu-
ous integration platforms like Jenkins provide strong support
to social coding platforms such as GitHub and GitLab by
optimizing code testing and deployment processes, not only
enhancing the efficiency of code submissions and testing but
also enabling real-time feedback and automated grading[80].

Cross-Platform Collaboration and Mutual Develop-
ment. Another prominent research topic is cross-platform
collaboration to achieve mutual development. For instance,
in the domain of information dissemination, different plat-
forms complement each other functionally to build an effi-
cient system for diffusion and collaboration. GitHub serves
as the starting point of information, providing initial re-
sources and technical support. Twitter extends the reach
of the information, covering a broader audience. Reddit
offers a platform for in-depth discussions, while Slack en-
hances the precision of information transfer through effi-
cient team collaboration. This cross-platform collaboration
mechanism leverages the complementary functionalities of
different platforms to enable the rapid dissemination and
sharing of information, significantly improving developers’

S.Yao et al.: Preprint submitted to Elsevier

Page 14 of 31

©
@
=4

©
g
b

945

©
2
°

©
&
S

©
&
=2

©
el
@

©
G
T

©
&
a

©
I3
<y

©
S
¢}

©
-
@

964

©
S
2

©
S
3

©
=y
o

©
N
R

©
N
@

980

Information and Software Technology

efficiency and quality in accessing relevant resources[77,
125].

4.3.3. Code Reuse and Evolution.

Reuse behavior of code snippets. Code reuse and evolu-
tion focusing on how developers utilize code snippets across
platforms to address programming challenges and improve
efficiency. Studies have shown that developers tend to reuse
larger and non-trivial code blocks, with a strong preference
for high-quality Stack Overflow (SO) posts. These posts are
often highly rated or frequently bookmarked, and develop-
ers commonly refer to multiple related posts. Additionally,
files that undergo frequent modifications exhibit signifi-
cantly higher rates of code reuse compared to other files[122,
90]. Among various languages, JavaScript is reused most
frequently, with references to its code in GitHub projects
dynamically evolving over time[116].

Evolution of reused code snippets. However, another
prominent research area focuses on the evolution of reused
code snippets. While code reuse offers convenience, it also
raises concerns regarding synchronization, updates, and se-
curity. Research by Manes et al.[14] found that code snip-
pets on Stack Overflow (SO) and GitHub typically evolve
independently, resulting in many reused SO code snippets in
GitHub projects not being updated in a timely manner[119].
Additionally, many reused code snippets contain security
vulnerabilities that propagate across multiple projects with-
out being addressed, posing significant risks.

Adaptation of reused code snippets. Other tasks also
include research on the adaptation of code snippets, a pro-
cess that involves multiple complex factors, such as con-
textual environment, semantic consistency, and functional
optimization. Zhang et al.[94] systematically revealed the
associations between Stack Overflow (SO) posts and cor-
responding code snippets in GitHub projects by combining
code clone detection, timestamp analysis, and explicit URL
references. Their study clarified the dynamic adaptation
features of cross-platform code reuse. The research found
that when developers modify the same code snippet, they
typically follow specific adaptation patterns. In subsequent
research[1 15], four typical context-based adaptation patterns
were further refined, including fortification, code wiring,
attribute-ization, and parameterization. These patterns re-
flect the diverse practices of developers in code adaptation.
The study also pointed out that most adaptations are correc-
tive in nature, primarily focused at the variable level, and
tend to occur within the last 10 lines of a code snippet. These
findings not only reveal the adaptation patterns in code reuse
but also provide theoretical guidance and practical support
for the development of automated adaptation technologies.

Attribution and Origin of reused code snippets. More-
over, the attribution of reused code snippets is another
common research task, as the use of reused code can
lead to maintenance and legal issues. Studies have shown
that insufficient attribution and a lack of understanding
of licensing agreements are prevalent among developers,
highlighting the significant legal challenges associated with

98

2

©
@
o

98

@

98

r

98!

o

986

987

98

&

989

990

99!

=2

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

code reuse[13, 97]. Furthermore, Stack Overflow itself faces
issues related to the origin of code, with approximately
70% of JavaScript snippets being sourced from GitHub
or other external repositories[93], further emphasizing the
complexity and multi-layered impacts of code reuse.

4.3.4. User Characteristics.

User identity recognition. In cross-platform research,
user identity recognition serves as the foundation for con-
ducting user characteristics assessment. Related studies fo-
cus on achieving accurate cross-platform user matching by
integrating multidimensional features [70, 74].

User expertise assessment. Based on user identity
recognition, user characteristic evaluation typically focuses
on developers’ expertise. However, traditional evaluation
methods, such as relying on resumes or social recommenda-
tions, often fail to fully capture a developer’s actual abilities.
Research shows that developers’ activities on Q&A plat-
forms significantly improve the accuracy of bug assignment
[106], and also play an important role in supporting “cold
start” users [103]. Additionally, developers’ contributions
on GitHub are largely driven by personal motivations, while
their activities on Stack Overflow are primarily related to
career development needs [50]. This difference in driv-
ing forces reveals distinct behavior patterns and needs of
developers across different platforms, further highlighting
the potential value of cross-platform data in skill evalu-
ation. Moreover, studies have found a significant positive
correlation between team members’ chat contributions and
code contributions, which validates the key role of soft
skills (such as communication and teamwork abilities) in
defining “expertise” [126, 50]. Therefore, the evaluation of
expertise should encompass not only technical skills (such as
programming languages and tool usage) but also soft skills,
as both are integral to a developer’s overall competence
[50]. Given the vast amounts of information contained
in online collaborative platforms, related research has in-
tegrated contribution data from social coding platforms
and social Q&A platform to construct aggregated views
of candidate contributions. Furthermore, tools have been
developed to support detailed analysis [124, 72], providing
more comprehensive and reliable bases for skill evaluation
and personalized recommendations.

User behavior and structure analysis. Analyzing users’
cross-platform behavior is another important task. Research
indicates that developers’ behaviors are driven by multiple
factors, influenced both by individual role characteristics
and external environmental factors [131, 109]. For example,
developers in different roles (such as repository owners,
project contributors, and followers) exhibit significant differ-
ences in their behavior on Twitter [131]. Additionally, major
events can have a profound impact on developers’ public
contribution behaviors, such as changes in activity levels
or adjustments in contribution patterns [109]. Furthermore,
studies on user structures have revealed the evolving patterns
of leadership structures within online platforms [132].

S.Yao et al.: Preprint submitted to Elsevier

Page 15 of 31

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

Information and Software Technology

4.3.5. Cross-platform Data Optimization.
Moreover, the optimization of cross-platform related

1079

1080

data has increasingly attracted attention. In the field of ic:

software engineering, textual data, such as source code com-
ments, issue descriptions, and Stack Overflow Q&A content,
contains rich semantic information, making it a valuable re-
source for enhancing the quality of cross-platform research.
To this end, researchers have employed topic modeling tech-
niques to optimize text analysis[108], refined knowledge-
sharing classification systems[121], and uncovered the pos-
itive effects of both explicit and implicit knowledge on
open-source contributions. Additionally, in addressing title
quality and cross-platform issue matching, studies have pro-
posed efficient automatic completion and semantic associa-
tion methods[99, 129]. These efforts collectively contribute
to the advancement of multi-source data mining and the
improvement of software collaboration efficiency.

Finding 2. Cross-platform research focuses on
five key topics: problem classification and feature
extraction(36.2%), platform collaboration(26.1%),
code reuse and evolution(15.9%), user character-
ization(15.9%), and cross-platform data optimiza-
tion(5.8%). Problem classification and feature ex-
traction improves data coverage and aids in issue
identification. Platform collaboration emphasizes in-
teroperability benefits, while code reuse and evolu-
tion tackle synchronization and security challenges.
User characterization highlights developer behavior
patterns and profiling assessment.

4.4. RQ3: How to design experiments for
cross-platform studies?
4.4.1. How is the data obtained?

When conducting cross-platform research, experimental
design must consider multiple key factors, particularly the
selection of datasets and the design of research methods.
Choosing appropriate publicly available datasets is funda-
mental to cross-platform studies. Currently, there are 40
publicly available cross-platform datasets for researchers to
use, as shown in Table 10. The table summarizes key infor-
mation about these datasets, including the research domain,
dataset name, scale, time range of data collection, access
links, related papers citing these datasets, and the specific
research tasks for which they can be used.

When selecting cross-platform datasets, problem classi-
fication and feature extraction is a key research direction.
Such datasets integrate information from multiple devel-
opment platforms (e.g., GitHub, Stack Overflow, Gitter)
and cover a range of developer activities, including col-
laboration, technical discussions, API usage, defect fixing,
as well as the use of machine learning frameworks (e.g.,
TensorFlow, PyTorch) and development tools (e.g., GitHub
Actions). The data typically exists in the form of issues,
posts, commits, and other content, which are the focus of re-
search. Currently, analyses of these datasets primarily focus

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

on software defect fixing and machine learning frameworks,
with relevant datasets being relatively abundant.

In the field of platform collaboration research, the focus
is on the impact of social media on developer behavior
and project development, as well as the flow of information
between different platforms. Relevant datasets emphasize
social media posts or tweet content, and how such content
influences activities on development platforms like GitHub
(e.g., issues, pull requests). Within this topic, research not
only emphasizes the contextual matching of information
across different platforms [130], but also focuses on rec-
ommendation evaluation based on global information. For
instance, researchers can establish connections between plat-
forms by analyzing URL information or keyword matching
in README files [79, 77], without relying heavily on spe-
cific contextual details.

In the field of code reuse research, cross-platform datasets
primarily focus on code snippets obtained from different
platforms, and use code clone analysis to explore the reuse
and evolution of code across platforms. A typical dataset in
this area is the SOTorrent dataset [11], which is specifically
designed to analyze cross-platform code reuse and evolution
between Stack Overflow and GitHub. This dataset provides
version histories of code blocks, revealing how technical
discussions on Stack Overflow influence code implemen-
tations on GitHub, and exploring the evolution, reuse, and
adaptation processes of code snippets.

Through an in-depth analysis of user characterization
evaluation and cross-platform data optimization, we can re-
veal how interactions between different platforms influence
developer behavior and the optimization of platform content.
Data collection primarily focuses on identifying the same
user across different platforms [131], and mining data related
to cross-platform data optimization, particularly common
types of information such as titles and their contextual
information, to optimize the flow of information between
platforms [99, 129].

Furthermore, the research field of general-purpose datasets
also has broad applications. Datasets such as StackOverflow
Data Dump, GHTorrent [136, 31], and gharchive provide
rich public data that supports a variety of research tasks. For
instance, the StackOverflow Data Dump offers quarterly up-
dates, including questions, answers, tags, votes, and badges,
making it a core data source for question-answering analysis.
GHTorrent provides over 900GB of raw data and 10GB of
metadata, covering multiple dimensions of data on GitHub,
such as issues, commits, and pull requests (PRs). Gharchive
collects event records from GitHub, encompassing 236
million event records from 2017 to 2020, with updates
occurring every hour. It is particularly worth noting that
GHTorrent is more suited for providing historical records
of individual projects and developer activity logs.

However, during the process of collecting and organizing
data, we identified several outdated datasets, whose access
links are no longer valid and cannot be used for subsequent
research. For example, since June 2019, shell access to the

S.Yao et al.: Preprint submitted to Elsevier

Page 16 of 31

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Information and Software Technology

GHTorrent service has been discontinued . In addition,
some older dataset links have become inactive, such as those
referenced in [110] and [103]. Furthermore, some datasets
have yet to be made publicly available, such as those cited in
[124],[75],[126], [108], [87], and [121]. Additionally, some
researchers have conducted problem analysis and studies
through interviews, as seen in [102], [133], and [50]. Re-
garding data collection methods, datasets in cross-platform
research are typically gathered through platform APIs or web
scraping techniques.

4.4.2. What kind of research methods are used in the
related studies?

Based on a systematic review of existing research, the
research methods in cross-platform software engineering
can be categorized into four main types: data-driven methods
(including data mining, code clone detection, semantic/text
analysis, time series analysis, etc.), qualitative studies (such
as interviews and surveys & questionnaires), modeling & ml
approaches(including machine learning and large language
models), and tool development and implementation (such as
tool prototyping, deployment & user evaluation).

Data-Driven Methods. Data analytics methods focus on
how to systematically collect, preprocess, and analyze large-
scale data from various platforms such as GitHub, Stack
Overflow (SO), and Twitter.

Data Mining. Researchers employ methods such as API
scraping [134, 120], tag-based retrieval [115, 107, 123, 88,
117, 114, 95], heuristic approaches [73, 91], and multi-
method hybrid search [112, 87, 15, 98, 104, 71, 10]. For
example, Li et al. [73] extracted QSE-related questions and
reports from Stack Exchange and GitHub through heuristic
search, and applied the LDA model to identify the challenges
faced by developers. Zhang et al. [115] collected 6,590
Stack Overflow questions and 315 GitHub issues via tag-
based retrieval and manual annotation, using metrics such
as avgView and ansRate to measure the popularity and
difficulty of the questions. Data mining has played a critical
role across various topics.

Code Clone Detection. To investigate cross-platform
code reuse, plagiarism, and evolution, researchers have in-
troduced clone detection tools such as NiCad, PMD [119],
and SourcererCC [122]. Yang et al.[122] applied multi-
level approaches, including exact matching, token hashing,
and partial clone detection, to analyze code snippets from
GitHub (Python projects) and Stack Overflow. Baltes et al.
[13], using large-scale datasets, employed regular expres-
sions and code clone detectors to explore the prevalence of
common Java code snippets on GitHub and validated the
phenomenon of uncredited code usage through developer
surveys. Code clone detection methods are primarily used in
cross-platform research to study the impact of cross-platform
code copying and pasting behaviors, providing essential
insights into code reuse patterns and their potential risks.

8https ://github.com/ghtorrent/ghtorrent.org

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

Semantic/Textual Analysis. As a key technique for ex-
tracting deep semantic information from unstructured de-
velopment data (e.g., issue reports, technical Q&A posts,
README documents), semantic analysis leverages natu-
ral language processing (NLP) to decouple language from
code context, enabling the effective identification of implicit
technical requirements and behavioral intentions in text.
For instance, Rahman et al. [110] combined Stack Over-
flow Q&A texts with GitHub code snippets and used KAC
(Keyword-API Co-occurrence) and KKC (Keyword-Context
Co-occurrence) algorithms to gather and rank candidate
API classes. Semantic analysis has significant application
value in scenarios such as API recommendation and Q&A
matching.

Time Series Analysis. Time series analysis treats devel-
opment activities (e.g., code commits, question postings,
post edits, etc.) as time series data, investigating their dy-
namic trends and temporal associations in cross-platform
information dissemination. For example, Manes et al. [14]
treated SO edits and GitHub revisions as parallel time flows
and studied their relationship by analyzing the “impact la-
tency.” Time series analysis is particularly suited for study-
ing issues involving temporal factors, such as the speed of
information diffusion and the efficiency of question answer-
ing.

Qualitative Studies. Qualitative research methods com-
plement quantitative analysis by uncovering developer be-
havior patterns, collaboration processes, and decision-making
factors that cannot be revealed through numerical data alone.

Interviews. For example, Bidar et al. [102] conducted
36 semi-structured interviews with members from Stack
Overflow and GitHub, and, based on Service-Dominant
Logic (S-D Logic) and Resource Integration Theory, devel-
oped an analytical framework for cross-platform value co-
destruction. Zhang et al. [115] interviewed 21 developers
to analyze the contextual adaptation mechanisms during the
code migration process.

Surveys & Questionnaires. Online surveys are widely
used to collect both quantitative and qualitative feedback
from large-scale user populations. For example, Vadlamani
et al. [50] conducted a survey with 73 developers who were
active on both GitHub and Stack Overflow, focusing on the
cognitive differences regarding the "expert" role and the
drivers and potential barriers to cross-platform contribution
behavior. Flores et al. [125] employed a multi-source sam-
pling strategy, recruiting a heterogeneous user group from
platforms like Twitter, Facebook, and Slack, and collected
data through structured online surveys. The study systemat-
ically coded the results qualitatively, analyzing information
dissemination patterns and also obtaining qualitative feed-
back on users’ multi-platform behaviors.

Modeling & ML Approaches. With the rapid devel-
opment of machine learning technologies, researchers have
increasingly introduced traditional machine learning algo-
rithms and large language models into the field of software

S.Yao et al.: Preprint submitted to Elsevier

Page 17 of 31

Table 10

Information and Software Technology

Publicly available datasets in cross-platform studies

Dataset

Topic Name/Related Dataset Scale Cited Appl|cat“|on (-, rep-
References resents “support”)
Research
[134] 91,704 bug reports, 5,024 GH commits, 909,812 SO posts. (link) —
415 SO bugs, 555 GH bugs, 320 SO bug fixes, 347 GH bug fixes
[112] o - —
for 5 DL libraries. (link) Software bug fixes
[123] (ll,Q% bug-related commits, 1,392 issues and PRs, 2,653 SO posts. o
in
[88] 186 Akka Actor Bug. (link) —
[02] 65 SO posts and 132 GH issues (TF Lite); 52 SO posts and 38 GH =~
issues (Core ML); 304 faults (287 posts). (link)
[15] 26,887 posts, 19,400 issues, 16,930 pull requests (TensorFlow, -
PyTorch, Theano). (link) ML frameworks
[113] 1,075 posts: 511 about Horovod, 329 about TensorFlow, 157 about
Problem PyTorch, 83 about Keras. (link)
Classification and [115] 6,590 SO questions, 2,471 SO accepted answers, 315 GH Actions GitHub Actions
Feature Extraction issues from 89 repos, 217 closed (2018-2022). (link)
[96] 127 threads covering APl mentions of 181 APl methods. (link) v API
86] 164,328 SO posts, 869,544 repos using target libraries. (link) —
107] 4,057 issues, 925 answered discussions, 679 posts. (link) — GitHub Copilot
104] 769 SO questions, 1,437 relevant GH issues. (link) — AutoML
[71] 6,755 SO posts, 4,962 forum posts, 3,332 GH issues, 3 GitLab ML asset
issues, 43 GH discussions. (link, link, link) management
[117] 385 GH issues, 354 SO posts. (link) — WebAssembly
[10] 1.2,432 F:VE patches from repos, 12,458 insecure posts from Q&A o CVE patches
sites. (link)
[114] 135 posts, 199 issues. (link) — Sarp
[01] 280,000 security-related dev discussions from SO and GH (15 Programming
languages). (link) language security
[95] 174 SO posts, 128 GH issues. (link) — Architecture decisions
[127] 3,133,106 messages across 24 chat rooms, 14,096 issue references, Gitter discussions —
457 manually analyzed issue reports. (link) GitHub issue
[130] 150 Space channels, 300 Slack channels, 2000 employees, 300 Slack channel recom-
teams, 2000 Space repos, 600 GH repos. (link) mendation
[83] 10,531 tweets with GH Sponsors links (May 2019 - Apr 2022). (link, Twitter tweets —» GH
Platform link) sponsors
Collaborati (6] 15,975 tweets, 28,569 retweets, 2,370 repos (Nov 2018 - Apr 2019). [131] Twitter tweets —» GH
ollaboration :
(link) repos
[100] Collected 196,276 pairs of annotation and API sequences. (link) [137] API
[77] 12,928 GitHub CVEs, 11,448 Twitter CVEs, 5,297 Reddit CVEs o CVE
(Jan 2015 - Sep 2017). (link)
[126] 4,506 contributors who collaborate on GitHub and chat on Gitter. . Common user on
(link) GitHub and Gitter
[79] 12,081 projects, 2,349 links with 282 types of readme links. (link) —— Analyze readme links
[119] 31,287,646 code snippets, 11,479 repos(4,098,397 files)(Dec 31, Code snippet evolu-
2020). (link) tion
[13] 29,370 SO Java snippets, 1,720,587 GH Java files. (link) —
[93] 276,547 SO code snippets, 292 GH repos, 12,579 clone pairs. (link) — Code snippet
[90] 793 repos (342,148 modified code snippets), 1,355,617 posts. (link) — -oce snippe
c [04] 312K SO posts, 51K non-forked GH repos. (link) — similarities
ode Reuse and . .
Evolution [89] 72,483 C++ code snippets. (link) —
SOTorrent 38.4M SO posts, 11M extracted URLs, and 5.81M linked posts in [119, 14, 116, Version history of SO
data set[11] 430K GH repos. (link) 115] text or code blocks
BigQuery 2.8 million GH repos, 145 million commits. (link) [97] CP:;\;ebrifllthliet;ode search
User Characterization [131] 70,427 GH-TW user pairs, 129,843 tweets linked to GH (Jan 1, Users' tweet and de-
2018 - Jul 1, 2019). (link) velopment activity
[99] 189,655 SO posts , 333,563 GH issues (Jul 2008 - Dec 2023). (link) — Title completion
Cross-platform Data Semantic matching of
Optimization [129] 16,761 SO posts, 12816 GH repos. (link) — GH repos and SO
posts
[101, 122, 109,
StackOverflow Archived SO content, including posts, polls, tags, badges, etc 73, 106, 120, Question and answer
Data Dump (Updated every quarter). (link) 97, 118, 70, analysis
General-purpose 111, 98, 72]
GHTorrent[136, Over 900GB of raw data and 10GB of metadata (issues, commits, [14, 122, 6,
31] PRs, etc.) (link) 116, 97] Querying GH public
gharchive 2.36B event records (push, issue, pull request, etc., 14 types, 2017- [109, 16] event data

2020)(Updated every hour). (link)

S.Yao et al.: Preprint submitted to Elsevier

Page 18 of 31

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

Information and Software Technology

engineering to address complex tasks such as platform rec-
ommendation, defect fixing, and cross-platform data opti-
mization.

Machine Learning / Model Building. Traditional ma-
chine learning methods, such as Random Forests and XG-
Boost, have shown significant advantages in classification
and recommendation tasks. For example, Treude et al. [108]
proposed a machine learning-based framework for optimiz-
ing topic modeling parameters. They first collected multilin-
gual text data from GitHub and Stack Overflow, extracting
24 statistical features, including character count, word count,
and entropy. They then applied the irace algorithm for auto-
mated parameter tuning, using perplexity as an evaluation
metric for the performance of the LDA model. Finally,
by training a cost-sensitive Random Forest model, they
achieved parameter configuration prediction based on cor-
pus features, providing an efficient and automated solution
for cross-platform text mining tasks.

Large Language Models. Pretrained language models,
such as GPT-4 and CodeBERT, are widely applied to com-
plex tasks such as code generation, defect fixing, and knowl-
edge inference. For example, Bo et al. [134] proposed a
knowledge-enhanced large language model approach for
software bug fixing. They first collected bug reports and cor-
responding fix information from GitHub, Stack Overflow,
and Bugzilla, using Named Entity Recognition to extract
bug entities and construct a Bug Knowledge Graph (BKG).
Then, they retrieved relevant historical information based on
syntactic and semantic similarity. Finally, they input the bug
description, code, and retrieved historical fix information
into GPT-4 to generate interpretable patches.

Tool Development and Implementation. To validate
the research methods, many studies further develop proto-
type systems and evaluate their performance in real-world
environments.

Tool Prototyping. Researchers develop tool prototypes
to support software engineering practices. For example,
Luong et al. [96] developed the ARSearch system, which
helps developers understand API usage by matching GitHub
example code with Stack Overflow threads. Heckman et al.
[80] built the Canary system, integrating professional tools
such as GitHub, Jenkins, and Eclipse to support code com-
mits, collaborative development, continuous integration, and
automated grading, providing a comprehensive framework
for supporting software engineering practices.

Deployment & User Evaluation. After tool development,
researchers assess tool performance and user experience
through both quantitative and qualitative methods. For ex-
ample, Mahajan et al. [111] developed the Maestro tool and
conducted internal evaluations using 78 instances from the
top 500 Java projects on GitHub. They compared the perfor-
mance of Maestro and its baseline variants with competing
tools, and further validated the tool’s effectiveness through
a user experience study involving 10 Java developers.

Evolution of Research Methods. The current research
methods exhibit several prominent trends: the dominance

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

of data-driven methods, an increasing integration of multi-
ple methodologies, and the rising exploration of intelligent
methods. Data-driven methods (accounting for 71.1%) have
become the foundational approach, widely applied in areas
such as code reuse analysis [122] and problem classification
and feature extraction [115]. At the same time, researchers
have begun to integrate cross-technology stack methodolo-
gies. For instance, Wang et al. [114] combined data mining,
surveys and questionnaires, and user evaluation in their study
analyzing the challenges posed by the runtime permission
model in Android 6.0 for developers. Although the appli-
cation of large language models (LLMs) is currently limited
(accounting for 10.5%), their potential in tasks such as defect
repair [134] and title completion [99] has already begun to
surface, marking the initial exploration and application of
intelligent methods in cross-platform research.

Analysis of Research Method Strengths and Weak-
nesses. As shown in Table 11, various research methods
exhibit distinct advantages and limitations in cross-platform
research. Data-driven methods (such as data mining) demon-
strate high efficiency and scalability in cross-platform stud-
ies, but their effectiveness relies on high-quality data and
semantic enhancement techniques. Modeling and machine
learning approaches (such as large language models) of-
fer automated support for complex tasks, but they face
challenges related to computational resources and domain
adaptation. Tool development and implementation methods
enhance practicality through validation in real-world scenar-
ios, but issues related to cross-platform compatibility and
maintenance costs still require further optimization. Qualita-
tive studies, while providing in-depth analysis of behavioral
logic, are limited by sample size and generalizability.

Finding 3. In the domain of cross-platform re-
search, we systematically compiled and organized
40 publicly available datasets. In terms of research
methods, existing studies primarily adopt four main
approaches: data-driven methods (71.1%), qualita-
tive research (9.2%), modeling & ml approaches
(10.5%), and tool development and implementation
(9.2%).

4.5. RQ4: What are the key challenges and
research opportunities identified in the
existing literature?

Cross-platform research facilitates resource sharing and
collaboration between different platforms, thereby enhanc-
ing development efficiency and the quality of information
dissemination. Despite the promising potential of this field,
cross-platform research faces numerous challenges, while
also offering a wealth of research opportunities. This section
will summarize the main challenges and research opportu-
nities related to cross-platform research as identified in the
existing literature, with the aim of providing guidance and
insights for future research directions.

S.Yao et al.: Preprint submitted to Elsevier

Page 19 of 31

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

Information and Software Technology

Table 11
Advantages and Limitations of Research Methods

Method Category

Core Advantages

Main Limitations

Data-Driven Methods [127,
130, 131, 119, 101, 14, 115,
78, 122, 132, 13, 86, 109,
83, 92, 73, 93, 75, 105, 126,
16, 6, 107, 90, 94, 106, 112,
123, 110, 116, 89, 120, 108,
97, 118, 77, 87, 15, 121, 88,
98, 104, 115, 128, 74, 71,
72, 117, 10, 114, 79, 125, 95,
113](71.1%)

Efficient processing of large-scale heterogeneous data
(e.g., Jallow et al. [119] detected 1.5 million code
snippets)

e Strong dependency on data
quality (e.g., Raglianti et
al. [79] reported a signifi-
cant amount of noise that
is difficult to filter)

e Limited semantic under-
standing (requires supple-
mentary semantic analysis)

Modeling & ML Approaches
[134, 100, 108, 103, 70, 99,
91, 129](10.5%)

Automation of complex tasks (e.g., Chen et al. [134]
for title completion)

Cross-modal information integration (e.g., Bo et al.
[134] combined BKG knowledge graphs)

e High computational and
data requirements (e.g.,
Chen et al. [99] processed
523,000 data entries)

e Limited domain adaptabil-
ity (e.g., Bo et al. [134]
achieved a correctness rate
of 28.52%)

Tool Development and Imple-
mentation [124, 78, 96, 80,
111, 103, 114](9.2%)

Real-world validation capability (e.g., ARSearch [96]
for cross-platform APl matching)

e Full-process support (e.g., Canary system [80] covering

development, collaboration, and evaluation)

e High maintenance costs
(e.g., synchronization of
GitHub/Jenkins/Eclipse
(80])

e Limited scalability (e.g.,
Mahajan et al.[111] fo-
cused on Java exceptions)

Qualitative Studies [102, 133,
123, 97, 50, 115, 114](9.2%)

In-depth behavioral insights (e.g., Bidar et al.[102]
conducted 36 interviews)

Fine-grained contextual analysis (e.g., Zhang et

al.[115] analyzed code migration contexts)

e Limited sample size

o Weak generalizability
(constrained by participant
backgrounds)

4.5.1. Challenges and opportunities of Problem
classification and feature extraction.

In the field of problem classification and feature extrac-
tion, the main challenges are concentrated in areas such as
subjective evaluation bias, limitations of the research con-
text, insufficient coverage of data sources, data recognition
accuracy, and limitations of classification methods.

Subjective evaluation bias. Subjective evaluation bias
is a significant challenge in problem classification and fea-
ture extraction. Many studies rely on manual classification,
labeling, and analysis of data, where different researchers
may evaluate the relevance of the data according to their
own standards, leading to inconsistent search results and
affecting the accuracy of experimental outcomes. Although
some studies use multiple authors to label the data, resolve
disputes with arbitrators, and calculate consistency using the
kappa coefficient to ensure labeling accuracy, this method

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

effectively reduces bias, but there remains the potential for
subjective influence [107].

Limitations of the research context. The limitations of
the research context present a significant challenge in cross-
platform research. Many studies analyze problems within
specific domains or small groups, which limits the gen-
eralizability of the findings and may also be influenced
by unobserved variables, thereby affecting the accuracy of
the results. For example, some studies assume that devel-
opers choose projects based on their skills, but in reality,
developers’ choices may be influenced not only by their
skills but also by factors such as personal interests and
network relationships[101]. Moreover, different platforms,
programming languages, datasets, and frameworks have dis-
tinct characteristics, making it difficult to generalize research
results to other domains or platforms[86]. For instance, the
retweet behavior on Twitter cannot be directly compared
with the like behavior on Facebook, as different social media

S.Yao et al.: Preprint submitted to Elsevier

Page 20 of 31

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

Information and Software Technology

platforms operate under different conceptual frameworks
and motivations[125].

Insufficient coverage of data sources. Insufficient cov-
erage of data sources is a common issue in cross-platform
research. User activity data is often not confined to a single
platform but is widely distributed across multiple platforms.
Although many studies primarily rely on Stack Overflow and
GitHub as data sources, and these platforms provide repre-
sentative datasets, some key issues may still be overlooked,
as not all problems are discussed on these platforms[88, 98].

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

Data recognition accuracy. Due to the high degree of 1.7

freedom in how users define problems, many issues are ex-
pressed without using explicit keywords, making it difficult
to accurately identify problems that are vaguely phrased but
closely related to the research topic[101, 10]. This vague ex-
pression complicates the selection of appropriate keywords
during the search for related information, thus affecting the
accuracy of information recognition and extraction.
Limitations of classification methods. Some studies
classify posts and issues using labels and keywords, but new
users may not use appropriate tags, and determining relevant
keywords can be difficult[98]. As a result, many studies have
turned to topic clustering methods, such as Latent Dirichlet
Allocation (LDA), for classification. However, LDA also has
several shortcomings. First, as a probabilistic model, LDA
can produce different results when run multiple times on
the same corpus[73, 15, 91]. Second, selecting the optimal
number of topics is challenging because the topic inference

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

process is subjective, which directly impacts the quality of 14c+

the topics generated by LDA[120, 91]. Additionally, the
poster may include a large amount of irrelevant content
in their posts, introducing significant noise into the topic
analysis performed by LDA[15]. Han et al.[15] further noted
that the LDA model often blindly captures topics without
considering the diversity of the dataset or domain-specific
knowledge, resulting in topics that lack meaningful connec-
tions to actual domain concepts.

The main opportunities are primarily focused on increas-
ing the diversity of data sources, optimizing data classifica-
tion methods, and improving data recognition accuracy.

Increase the diversity of data sources. Increasing the
diversity of data sources is one of the most critical opportu-
nities identified by researchers. The researchers plan to ana-
lyze more relevant platforms and their available information
resources[115], extend coverage to different programming
languages and frameworks[96, 105]. Given that platforms
will continue to generate new information, the research will
also focus on continuously collecting and updating data to
ensure its timeliness and comprehensiveness[107].

Optimize data classification methods. Future research
should focus on improving the accuracy of topic classifi-
cation for posts and issues[73, 115, 86], although no ef-
fective solutions have been proposed so far. Waseem et
al.[117] suggest validating the classification methods for
problems, causes, and solutions through industry surveys,
seeking deeper insights from practitioners’ perspectives. Ad-

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

uze ditionally, Li et al. [73] plans to explore different clustering 142

methods to assess whether more representative clustering
results can be obtained.

Improve data recognition accuracy. Given that sub-
mitted information often lacks clear keyword descriptions,
future research plans to improve the accuracy of information
recognition by analyzing the entire content of posts[10].
Furthermore, the research will focus on further developing
and optimizing automated validation mechanisms, using
natural language processing techniques to identify and filter
inaccurate or unclear responses, while also integrating user
behavior data from the platform to enhance recognition
accuracy[134]. Optimizing the selection of tag sets is also
an important direction for improving the accuracy of issue
recognition[73].

4.5.2. Challenges and opportunities of Platform
Collaboration.

In the field of Platform Collaboration, there are chal-
lenges similar to those in problem classification and feature
extraction, such as limitations in the research context, insuf-
ficient coverage of data sources, sample selection bias, data
recognition accuracy, subjective evaluation bias, and the ap-
propriateness of evaluation metrics. However, unlike in the
problem classification and feature extraction domain, these
challenges have not received the same level of widespread
attention. Research under the theme of platform collabora-
tion is more focused on exploring future opportunities.

Among these key challenges, two aspects are particularly
noteworthy:

Insufficient coverage of data sources. Sahar et al. [127]
point out that the rich volume of reports, citations, and
discussions on social media platforms has not been fully
utilized in existing research. Another overlooked aspect is
deleted content, such as deleted tweets. Despite being re-
moved, these pieces of information should not be underesti-
mated, as they hold potential value [6].

Data recognition accuracy. Fang et al. [6] highlight
that errors may occur when matching users across platforms.
Additionally, Reinhardt et al. [103] note that while mining
API usage patterns from GitHub projects can help detect
API misuse in Stack Overflow code snippets, the common
patterns extracted do not necessarily represent correct API
usage, which may lead to false positives. The accuracy of
data recognition directly impacts the reliability and validity
of research outcomes.

In the field of Platform Collaboration, researchers have
identified several areas that warrant further investigation.
First, regarding information analysis and tool development,
existing solutions struggle to effectively integrate large vol-
umes of data and cannot accurately identify the most chal-
lenging technical help requests. Consequently, there is an
urgent need to develop tools capable of automatically ana-
lyzing and summarizing platform content [127]. Second, the
potential of platform support for bots remains underutilized.
Researchers advocate incorporating more bots to automate
routine collaboration tasks (e.g., automatically merging pull
requests) and to facilitate coordination between experts and

S.Yao et al.: Preprint submitted to Elsevier

Page 21 of 31

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

Information and Software Technology

newcomers, thereby enhancing overall collaboration effi-
ciency [127].

In addition, regarding the relationship between social
media platforms and social coding platforms, it has been
observed that many issues are cited only after a consider-
able delay, at which point the likelihood of their resolution
increases. Researchers have called for a deeper investigation
into the impact of the timing of issue citation on the resolu-
tion process within social coding platforms [127]. Moreover,
over half of open-source projects do not utilize visible com-
munication channels, which may negatively affect project
efficiency and success rates, warranting further exploration
[78]. Additionally, GitHub Sponsors official templates have
a significant influence on social media activities. There
is a need for empirical analysis to design more engaging
social media content and to understand how open-source
projects across various organizations and domains (e.g., se-
curity, machine learning) attract different types of sponsors
[83]. Furthermore, the specific elements of tweets, such as
whether they focus on a particular issue or pull request, and
their influence on attracting new contributors, remain an area
requiring further investigation [6, 128]. During the sharing
of information on social media, personal opinions are of-
ten appended, potentially altering the original meaning and
impact of the information. Consequently, it is necessary to
study how this "information evolution" process affects col-
laboration and dissemination mechanisms [77]. At the same
time, as privacy concerns grow increasingly prominent, it
is imperative to explore ways to enhance the functionality
of collaborative platforms while ensuring data security [75].
Finally, although the difference-in-differences (DiD) method
is widely applied in causal inference research within social
sciences, its use in software engineering remains relatively
rare. Researchers are encouraged to adopt similar causal
inference designs in software engineering contexts [6].

4.5.3. Challenges and opportunities of Code Reuse
and Evolution.

In the study of code reuse and evolution, bias in code
snippet sources and limitations of clone detection tools bias
have emerged as two primary issues of focus.

Bias in code snippet sources. Existing studies often
assume that code snippets are directly copied from Stack
Overflow to GitHub projects. However, in reality, code snip-
pets on GitHub may originate from various sources, such as
tutorials, other GitHub projects. This assumption may result
in insufficient data representativeness, leading to biases in
the analysis of code reuse [119, 122, 13, 115].

Limitations of clone detection tools bias. The choice
of clone detection tools can also introduce bias, as different
tools adopt varying definitions of code clones, matching
algorithms, and detection standards. Consequently, research
findings that rely on specific clone detection tools may vary
if alternative tools are employed [93].

In addition to addressing existing challenges, researchers
have highlighted several opportunities to advance the field of
code reuse and evolution.

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

Researchers have observed that code snippets from Stack
Overflow are often modified for reasons related to secu-
rity or correctness. As a result, these modifications may
render corresponding snippets on GitHub outdated, posing
potential risks to developers. To address this issue and
assist developers in monitoring changes to Stack Overflow
code snippets, researchers have proposed the development
of dynamic update tools. Additionally, Baltes et al. [13]
and Manes et al. [14] proposed the development of code
version history datasets. By analyzing the historical versions
of Stack Overflow snippets, these datasets can track the evo-
lution of code, identify potential defects, and automatically
flag erroneous versions. Such tools provide valuable insights
to developers, enabling them to avoid replicating flawed code
snippets. Given the significant variation in the quality and
reliability of code snippets on Stack Overflow, researchers
have also proposed leveraging the evolution history and us-
age history of Stack Overflow content to develop predictive
models for assessing snippet quality. This kind of model can
assist developers in determining whether a particular code
snippet is sufficiently mature and suitable for use in their
projects [14].

4.5.4. Challenges and opportunities of User
characterization.

The evaluation of user characteristics faces significant
challenges, particularly in addressing user role differences.
Users in different roles exhibit distinct behavior patterns and
data usage. For instance, non-technical employees, such as
HR personnel, often lack access to technical repository data,
resulting in differing usage patterns [130, 75]. To address
this, Papoutsoglou et al. [75] proposed linking user roles to
the thematic content they produce. Furthermore, Singer et
al. [133] focused on the differences in social media usage
among various types of developers. Their research aims to
compare the social media usage patterns of web developers
versus low-level systems programmers and users of static
languages versus dynamic languages. Such analyses not only
reveal the diversity of user characteristics but also provide
researchers with a foundation for building more accurate
user profile models.

Furthermore, researchers have identified two primary
research opportunities: consideration of new users and clar-
ification of user skill requirements.

Firstly, to enhance the representativeness and validity
of research findings, the behaviors and characteristics of
new users need to be taken into consideration [50]. Wan
et al. [103] suggested that future research should focus on
addressing the challenges posed by cold-start users, who
are those with insufficient information available from any
data source. For these users, research aims to infer their
areas of expertise and interests from limited data, enabling
a more comprehensive understanding of user characteristics
and better addressing their needs.

The evaluation of user expertise primarily focuses on
clarifying skill requirements and conducting an in-depth

S.Yao et al.: Preprint submitted to Elsevier

Page 22 of 31

Information and Software Technology

10+ analysis of user characteristics. Vadlamani et al. [50] pro-
1605 posed the development of a cross-platform expertise frame-
10s WOrk encompassing a broader definition of “expertise”. This
107 framework aims to examine the attributes of experts who ac-
108 tively contribute across multiple platforms. Similarly, Croft
100 et al. [91] emphasized the importance of conducting more
extensive qualitative analyses or user studies to explore
user expertise in greater detail, offering a comprehensive
understanding of their skills and engagement levels. Mean-
while, Smirnova et al. [101] highlighted that founders and
maintainers of open-source software (OSS) projects should
clearly communicate the specific skills they require from
contributors to enhance collaboration efficiency and drive
project development.

1610
1611
1612
1613
1614
1615
1616

1617

16 4.5.5. Challenges and opportunities of cross-platform
data optimization.

As programming tasks increasingly rely on data from
multiple platforms, optimizing cross-platform data to enable
effective retrieval and understanding has become a critical
research area. One of the key challenges lies in addressing
the semantic gap between user queries and relevant answers,
particularly in programming-related contexts.

Semantic Gap Challenges. Traditional information re-
trieval (IR) methods typically rely on keyword matching;
however, programming-related tasks exhibit significant lin-
guistic discrepancies between queries and answers. Queries
are often expressed in natural language, while answers may
consist of code, technical jargon, or a combination of both.
This semantic gap makes it challenging for simple keyword-
based methods to effectively capture the deep relationships
between user needs and potential solutions. Furthermore,
programming tasks involve extensive use of domain-specific
terminology (e.g., programming languages, library func-
tions, and technical concepts), which increases the com-
plexity for non-specialized systems and models to process
effectively [129].

Improve the quality of real titles and utilize large
language model technologies. To address these challenges,
Chen et al. [99] proposed a semantic-based title completion
method for GitHub issues and Stack Overflow posts. They
plan to design novel evaluation strategies to measure the
quality of generated titles through semantic consistency. Ad-
ditionally, by leveraging advanced large language models,
they aim to efficiently learn title generation knowledge using
classification features from questions or posts and further
train personalized models. This approach is expected to
extend to title generation tasks across various domains in
software engineering.

Optimize data classification methods. Furthermore, to
address the limitations of traditional topic modeling methods
165« (such as LDA) in classification tasks, Treude et al. [108]
1655 proposed that by optimizing topic model parameters, uti-
156 lizing larger and more diverse corpora, and incorporating
1657 additional features, classification performance can be im-
1ss proved. They also suggested further exploring the optimal
1650 relationships between features and model configurations.

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

10 These studies offer new directions for improving the utiliza-
1661 tion and optimization of cross-platform data.

Finding 4. Based on the extracted challenges and
opportunities, different research topics commonly
face several technical limitations, such as subjec-
tive evaluation bias in manual data classification,
insufficient data source coverage, and inaccurate
data recognition. Beyond these shared constraints,
each topic also presents unique challenges, research
opportunities emphasize the need to enhance the
diversity of data sources, improve data recognition
accuracy, optimizing data classification methods,
and clarifying user skill requirements.

1662

5. Discussion

1663

This section builds on the findings of the preceding
research to conduct an in-depth discussion of the key chal-
lenges and potential opportunities identified in cross-platform
studies. Targeted future research directions and practical
recommendations are proposed, offering specific guidance
for researchers, service providers, tool developers, and prac-
titioners.

1664
1665
1666
1667
1668
1669

1670

6 5.1. Future Agenda for Cross-Platform Studies
w2 5.1.1. Diversity of data sources

The research findings (concerning RQ1 and RQ4) sug-
gest that current cross-platform studies primarily rely on
technical information, project/post/bug report metadata, in-
teraction logs [101, 115, 92]. While these traditional data
sources offer some insights into platform activities, their lim-
itations are becoming increasingly apparent. For example,
emerging data such as bots [138] and emojis [139] have
yet to be fully explored for their potential value in cross-
platform research, even though these factors are crucial for
enhancing platform cohesion and long-term sustainability
[139]. Furthermore, traditional data sources may be biased
towards certain user groups, failing to reflect the diversity
of heterogeneous platforms, which could lead to skewed
research conclusions [103]. As platform ecosystems evolve
rapidly, relying on a single data source increasingly struggles
to address the complexity of dynamic interaction patterns,
making the research outcomes less universally applicable.

Future research directions. A more comprehensive
understanding of cross-platform research will require the
integration of richer data sources, particularly emerging
data such as bots and emojis. Additionally, research should
extend its scope to include a diverse range of programming
1605 languages, platform types, and user groups [115, 96, 105,
s 107, 104].

1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

1694

wor 5.1.2. Employing multiple methods to address
discontinuities and biases of data

1699 By analyzing the challenges identified in RQ4 and the
0 public datasets compiled in RQ3, it was found that data
o discontinuities and biases significantly impact the reliability

1698

S.Yao et al.: Preprint submitted to Elsevier

Page 23 of 31

Table 12

Information and Software Technology

Summary Table of Research Topics, Challenges, Related Studies, and Opportunities

Research Topic

Challenges

Related Study

Opportunities

Related Study

Data recognition accuracy

Sample selection bias

[134, 120, 88, 104,
71, 91, 95, 113]
[134, 104, 91]

Improve data recognition accuracy

Optimize the organizational structure of OSS projects

[134, 73, 112]

[101]
[115, 96, 105, 107,

High degree of freedom in issue descriptions [134] Increase the diversity of data sources 104, 134, 102, 73,
15, 88, 91, 92]
[101, 96, 86, 105,
Limitations of the research context 112, 87, 15, 71, Optimize data classification methods [73, 115, 86]
95, 113]
Problle.m . Limitations of classification methods [73, 123, 120, 15, Increase the diversity of error types [105]
classification and 91]
feature extraction Difficulty in recruiting interview subjects [123] Practical validation and real-world applications [107]
Appropriateness of evaluation metrics [120, 71] Explore the impact of document quality [98]
Completeness of information usage [88] Content analysis of social media platforms [71]
Data timeliness issues [98] Develop automation tools [113, 112]
[101, 115, 92, 73,
Insufficient coverage of data sources 107, 120, 88, 98,
117]
[134, 115, 86, 92,
. . . 105, 107, 112,
Subjective evaluation bias 123, 15, 88, 104,
117, 91, 95, 113]
effectiveness of the fix measures [105]
Limitations of the research context [130, 133, 100] Develop automation tools [127]
Appropriateness of evaluation metrics [128] Expand the application scenarios of robotic tools [127]
Insufficient public information 78] Inve.stlgatg _the impact of citation timing on problem- [127]
solving efficiency
Insufficient coverage of data sources [83, 6, 128, 127] Impact of multimodal data in project applications [130]
Sample selection bias [133, 79] Thel impact of the lack of social media use in research 78]
projects
Data recognition accuracy [6, 128, 103, 79] Completeness of information usage [130, 100]
Low accuracy of semantic alignment [100] Increase the diversity of data sources [83, 133, 100, 83]
Difficulty in related code search [110] The role of GitHub templates in open-source projects [83]
Limitations of text similarity measurement methods [110] How organizations utilize social media [83]
Platform . Performance optimization challenges [110] Explo_re the impact of open-source project domains and [83]
Collaboration functions
Complexity of code fragment analysis [118, 103] Strengthen data privacy protection [75]
Subjective evaluation bias [111] Rese‘arch on the app_xllcatAlon of differential design meth- [6]
ods in software engineering
Study the influencing factors in the evolution of infor- [77]
mation
Improve data recognition accuracy [111]
Quantify the impact of social media on open-source
[128]
platforms
Practical validation and real-world applications [79]
Content analysis of social media platforms [6, 128]
IJ:;Z:; management tools for SO code snippet depen- [119] Develop dynamic code snippet update tools [119, 14]
Bias in code snippet sources [119, 122, 13, 115] Create code version history datasets [14, 13]
Insufficient coverage of data sources [14, 116] Evaluate the quality of SO content [119, 14]
Broad definition of code snippet [14] Completeness of information usage [122]
Data recognition accuracy [819‘} 90, 94, 116, Study the sources of code snippets [122]
Code Reuse and Limitations of the research context [13, 90, 94, 115] Use reverse engineering techniques to identify missing [13]
Evolution code references
Sample selection bias [13, 93, 94, 115] Increase the diversity of data sources [93, 90, 89]
Limitations of clone detection tools [93, 90] Eg:zzce detection capabilities for Type Il and IV code [90]
Subjective evaluation bias [93, 89, 115] f:;:ir;ithen detection of code security and privacy pro- [04]
Differences in data source versions [93] Analyze the impact of code snippet evolution [116]
Data source version tracking [89] Develop automated detection tools [97]
Address copyright and policy issues in code snippets [107]
Inconsistent data [131] Analyze the user role lifecycle [132]
Data recognition accuracy [131, 109, 74] User role differences [109]
Insufficient coverage of data sources [1103;311 132, 126, Completeness of information usage [126, 74]
Limitations of the research context [124, 126, 106, 72] Expand the boundaries of research domains [106, 103, 72]
User role differences [124, 130, 75, 133] Improve data recognition accuracy [106]
User Interference from bots on GitHub [109] Consideration of new users [103, 130]
Characterization Sampling bias [126, 50] ﬁ:‘aelyze the trends in user interests and expertise over [103]
Subjective evaluation bias 50] E(x)plore the impact of user profiles and reputation on [103]
Vagueness in the definition of “active users” [50] tl?;vlzlop cross-platform user identification automation [70]
Increase the diversity of data sources 50, 74]
Clarify evaluation standards for professional knowledge 50]
Cross-platform knowledge transfer mechanism research 50]
Conduct large-scale quantitative research 72]
Clarify user skill requirements 101, 91, 50]
Appropriateness of evaluation metrics [108] Optimize data classification methods 108]
Limitations of the research context [108] Develop automation tools 108]
Cross-platform Data recognition accuracy [121, 99] Content analysis of social media platforms 121]
Data Subjective evaluation bias [99] Improve the quality of real titles 99]
Optimization Difficulty in semantic alignment of long-format data [129] Utilize large language model technologies 99]
Practical validation and real-world applications 129]

S.Yao et al.: Preprint submitted to Elsevier

Page 24 of 31

Information and Software Technology

o2 of research. Due to the intermittent nature of user activity, s This information is often regarded as "noise," posing sig-
1703 researchers often rely on subjective judgment when selecting 1757

1704

1705

1706

data collection periods, which leads to temporal bias in the
data. Furthermore, the voluntary deletion of data by users
and routine platform maintenance (e.g., removal of outdated

1758

1759

1760

wor or improperly formatted data) exacerbates the issues of e

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

data discontinuity and bias. Although previous studies have
highlighted the impact of data loss and deletion on research
outcomes [140, 131], effective solutions to these challenges
remain largely unexplored.

Future research directions. To address these issues,
future research could explore various data processing meth-
ods. For instance, weighted and sampling techniques could
be employed in combination with K-means clustering-based
neural network approaches [141] or multivariate interpola-
tion methods to enhance data completeness and analytical
accuracy. These techniques can effectively fill in missing
data, reduce bias, and thereby improve the reliability of the
research.

5.1.3. Considerations for dynamic heterogeneous
graphs or networks

In the study of heterogeneous data across platforms,
researchers typically analyze data from each platform in-
dependently before integrating these datasets. While this
approach is simple and straightforward, it may overlook the
consistency of user interactions and behaviors across plat-
forms. Moreover, user interactions in open-source platforms
naturally form graph structures, making heterogeneous in-
formation networks [142, 70] and Graph Convolutional Net-
works (GCN) [143] ideal tools for analysis. However, with
the rapid development of open-source projects, collaboration
patterns, technological preferences, trending topics, and the
interests and expertise of platform developers are evolving
rapidly. Current models based on heterogeneous networks
have not yet fully captured the dynamic changes in user
features. On the one hand, these models rarely explore
the dynamic evolution of user characteristics; on the other
hand, existing GCN models lack the ability for real-time
incremental data acquisition, and their training speed still
needs to be improved.

Future research directions. To address the above is-
sues, future research could focus on improving the dynamic
modeling of social graphs or networks. Specifically, there is
a need to develop models capable of capturing the dynamic
changes in user features. Additionally, enhancing the ability
of Graph Convolutional Networks (GCNs) for real-time
incremental data acquisition and accelerating their training
speed would contribute to more efficient and accurate anal-
ysis of dynamic heterogeneous networks.

5.1.4. Identifying off-topic conversations or
non-technical interactions
The data environment in open source platforms is inher-
ently complex due to the abundance of unstructured infor-
mation, such as irrelevant discussions and duplicate content.

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

nificant challenges to data processing. Current research pri-
marily focuses on basic text preprocessing techniques, with
limited exploration into effectively identifying and filtering
non-technical interactions. Tao et al. [144] have made no-
table progress in this area by selecting high-quality commit
messages as training samples and applying knowledge en-
hancement and dynamic denoising techniques, significantly
improving the quality of the generated commit messages.
According to the findings of RQ2, cross-platform studies
often rely on diverse unstructured information to establish
connections across platforms. Therefore, this approach holds
potential for further application in cross-platform research,
such as analyzing GitHub issues, README files, and Stack-
Overflow posts, to more efficiently identify and connect
related information across different platforms.

Future research directions. Building on the current re-
search, future efforts should focus on more effectively iden-
tifying and filtering irrelevant discussions and non-technical
interactions in open source platforms. This requires the
development of intelligent algorithms that leverage deep
learning and knowledge graph techniques to enhance the ac-
curacy of noise filtering. Additionally, integrating multiple
data types, such as code snippets, comments, and text, could
further improve the models ability to understand and process
complex data.

5.1.5. Strengthening the capacity to detect Type-3 and
Type-4 clones

In the study of cross-platform code reuse, tools such
as CCFinder [145] and SourcererCC [122] are commonly
employed for code clone detection. Code clones are gener-
ally classified into four types [42]. Among these, CCFinder
is effective at detecting Type-1 and Type-2 clones, while
SourcererCC extends this capability to include Type-3 clones.
However, according to the findings of RQ4, the performance
of existing tools in detecting Type-3 clones across platforms
remains limited and requires further improvement [122].
Type-3 clones involve more complex structural or syntactic
modifications, making their accurate detection particularly
critical as they are most likely to introduce errors in code
repositories, potentially compromising software quality [?
]. Additionally, Type-4 clones, characterized by semantic
rather than syntactic similarity, pose even greater challenges
for detection. In efforts to achieve a more comprehensive
analysis of code reuse, accurately identifying and processing
Type-3 and Type-4 clones, particularly those involving
semantic similarities, remains a major challenge in current
research. Existing detection methods exhibit significant
limitations when addressing the semantic complexity and
the high false positive rates often associated with Type-4
clones [146].

Future research directions. Future research should fo-
cus on enhancing the detection capabilities for Type-3 and
Type-4 clones. For Type-3 clones, it is necessary to further
improve existing algorithms and tools to enhance the accu-
racy and efficiency of cross-platform detection. For Type-4

S.Yao et al.: Preprint submitted to Elsevier

Page 25 of 31

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

Information and Software Technology

clones, which are characterized by semantic similarity, more
precise methods need to be developed to address their high
false positive rates and complex semantic structures.

5.1.6. Exploring the connection between
HuggingFace and GitHub

In recent years, collaborative practices within the open
Al ecosystem have been rapidly emerging, with Hugging
Face and GitHub playing significant roles in the construc-
tion, sharing, and maintenance of AI models [147]. Hugging
Face, as a platform for showcasing and distributing AI mod-
els, hosts over 400,000 AI models, 150,000 applications,
and 100,000 datasets’, attracting widespread participation
from developers [147]. Meanwhile, GitHub serves as a key
platform for code hosting and collaboration, occupying a
critical position in AI model development. However, despite
the complementary functions of these two platforms, their
specific interconnections have not been sufficiently explored,
as highlighted by the platforms listed in RQ1.

The openness of Al models encompasses various di-
mensions, including training data, source code, model archi-
tectures, model parameters, documentation, and associated
licensing [148]. These components are often distributed
across different platforms, such as code being hosted on
GitHub and models being published on Hugging Face [149].
While this cross-platform distribution enhances collabora-
tion flexibility, it also significantly increases the complex-
ity of collaboration. For instance, the interaction between
components across platforms and the effective management
of data flow remain underexplored, with no clear research
framework established. Furthermore, these components fre-
quently adopt different open-source licenses, and compati-
bility issues between these licenses could affect the usability
of Al software and the redevelopment of models. Identifying
these cross-platform distributed components and systemati-
cally analyzing their potential impact on the efficiency of Al
project development and the health of the ecosystem remain
critical challenges for current research.

Future research directions. Future research should
focus on exploring the collaborative dynamics between
Hugging Face and GitHub. This includes investigating the
collaboration patterns of the same project across different
platforms and analyzing their practical implications for
Al model development and sharing [147]. Additionally, to
address issues related to open-source license compatibility,
future studies should develop systematic methods to identify
distributed open-source components across platforms and
conduct in-depth analyses of license compatibility to facili-

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

tate more efficient model redevelopment and integration of 11

Al software.

5.2. Implications and Practical Recommendations
5.2.1. Implications to developers

This review provides guidance for developers in address-
ing relevant issues and promoting open-source projects. It
highlights key considerations when reusing code snippets

9ht’tps ://huggingface.co/

1911

1912

1913

1914

1915

1916

1917

1918

during the development process, such as tracking source
code updates, ensuring security and quality, and adhering to
copyright compliance. By addressing these aspects, devel-
opers can more effectively mitigate potential risks associated
with code reuse.

5.2.2. Implications to researchers

Although cross-platform research has gained some at-
tention in recent years, many challenging and unexplored
areas remain. Researchers can build on the future research
directions proposed in this study to further expand rele-
vant research. Additionally, RQ2 summarized the types of
information that cross-platform research relies on, while
RQ3 provided an overview of existing public datasets and
research methods, offering researchers convenient guidance
for conducting related studies. Furthermore, RQ3 revealed
that existing cross-platform research tools, such as Grimoire-
Lab [150], have not been fully utilized. GrimoireLab is
capable of automatically and incrementally collecting data
from various platforms, including version control systems,
issue tracking systems, and forums [151]. This functionality
addresses the major challenge of insufficient data sources in
cross-platform research, enabling more comprehensive data
collection and analysis. Future researchers are encouraged
to effectively integrate such tools into cross-platform data
analysis workflows to enhance research efficiency and data
coverage.

5.2.3. Implications to service/tool providers

The findings of RQ4 indicate that existing studies pre-
dominantly rely on manual analysis, which introduces sig-
nificant subjective evaluation biases [134, 115, 86]. Future
research should focus on developing automated analysis and
information extraction tools, as well as training classification
tools to improve the efficiency of issue resolution [127].
Moreover, there is a lack of tools for managing dependencies
on code snippets, particularly those sourced from platforms
like Stack Overflow. Currently, no tools exist to effectively
manage these dependencies or track updates and security
discussions related to such code snippets [119]. Developing
these tools could enhance the reliability and maintainability
of software projects and represents a promising research and
development direction for service and tool providers.

6. Threats to validity

This section is divided into four parts based on the guide-
lines proposed by Runeson et al. [152], including construct
validity, internal validity, external validity, and reliability.

6.1. Construct validity

In our study, a significant threat to validity arises from
the fact that many relevant papers do not explicitly mention
cross-platform related search terms, but instead use specific
platform names. This practice limits the literature retrieval
process and may cause us to overlook relevant studies,
thereby affecting the comprehensiveness and accuracy of the
research findings. To mitigate this threat, we first constructed

S.Yao et al.: Preprint submitted to Elsevier

Page 26 of 31

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

Information and Software Technology

an initial search string using cross-platform keywords, then
applied Named Entity Recognition to extract relevant en-
tities from the titles and abstracts of the collected papers.
After manual review, we identified 19 common platform-
related entities and iteratively refined the search string based
on these entities to conduct a more comprehensive literature
search. This process effectively alleviated the limitations in
literature retrieval and enhanced the breadth of literature
coverage.

6.2. Internal validity

Paper searching. Selection bias may occur during the
paper screening phase due to the personal preferences and
diverse background knowledge of the researchers, which
could lead to the exclusion of essential studies. To minimize
selection bias and ensure the reliability of our selection
process, the first two authors independently reviewed a ran-
domly selected subset of papers, assessing the consistency
of their inclusion decisions. Inconsistencies were discussed,
leading to a unified outcome.

Data extraction. At the same time, we clearly listed the
specific data to be extracted from each paper, and from which
section these data should be obtained, to minimize the risk
of omitting relevant data.

Data analysis. To alleviate the impact of personal bias
in addressing the data analysis process, we employed the
open card sorting method to categorize data relevant to
each research question. Furthermore, in order to decrease
potential misinterpretation of the experimental design and
analytical methods used in the related study, we conducted
additional validations and held several discussions.

6.3. External validity

Our review is focused on cross-platform research in the
open-source domain. Although our study does not extend
to interactions among platforms such as YouTube, the plat-
form connectivity strategies and analysis methods we have
summarized primarily utilize user behavioral data within the
platforms involved in our study. Consequently, our findings
may offer valuable insights for understanding interactions
across various online platforms.

6.4. Reliability

To enhance the replicability of our findings, we have
shared every aspect of our research process in our open-
source project. This includes the search strings used for each
database and the papers retrieved at each stage.

7. Conclusion

This paper provides a systematic review of the cur-
rent state and evolution of cross-platform research in open-
source platforms, with a focus on social coding, social
Q&A, and social media platforms. We analyze the types
of cross-platform connections, key research themes, and
commonly used experimental designs, while extracting the
opportunities and challenges highlighted in relevant studies.
The research identifies several key areas in cross-platform

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033

research, including problem classification and feature ex-
traction, platform collaboration, code reuse and evolution,
user characterization, and cross-platform data optimization.
Additionally, this study summarizes 40 publicly available
datasets and categorizes research methods into data-driven
methods, qualitative studies, modeling & ml approaches, and
tool development and implementation.

Based on the challenges and opportunities identified, we
propose six future research directions and practical recom-
mendations, aiming to provide comprehensive guidance for
researchers and to promote further exploration and develop-
ment in this field.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China (Grant No. 62332005).

References

[1] L.F.Dias,I. Steinmacher, G. Pinto, D. Alencar Da Costa, M. Gerosa,
How does the shift to github impact project collaboration?, in:
2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2016, pp. 473—477. doi:10.1109/ICSME. 2016.78.
X.Song,J. Yan, Y. Huang, H. Sun, H. Zhang, A collaboration-aware
approach to profiling developer expertise with cross-community
data, in: 2022 IEEE 22nd International Conference on Software
Quality, Reliability and Security (QRS), 2022, pp. 344-355. doi:10.
1109/QRS57517.2022.00043.

B. Vasilescu, A. Serebrenik, P. Devanbu, V. Filkov, How social
q&a sites are changing knowledge sharing in open source software
communities, in: Proceedings of the 17th ACM Conference on Com-
puter Supported Cooperative Work & Social Computing, CSCW
’14, Association for Computing Machinery, New York, NY, USA,
2014, p. 342354. URL: https://doi.org/10.1145/2531602.2531659.
doi:10.1145/2531602.2531659.
Adrian Twarog, StackOverflow
I use GitHub more often,

(2]

[3]

4] isn’t as useful

anymore?
https://dev.to/adriantwarog/

stackoverflow-isn-t-as-useful-anymore-i-use-github-more-often-638

2020. [Online; accessed: 2024-05-16].

H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network
or a news media?, in: Proceedings of the 19th International Confer-
ence on World Wide Web, WWW ’10, Association for Computing
Machinery, New York, NY, USA, 2010, p. 591600. URL: https:
//doi.org/10.1145/1772690.1772751. d0i:10.1145/1772690.1772751.
H. Fang, H. Lamba, J. Herbsleb, B. Vasilescu, "this is damn slick!":
Estimating the impact of tweets on open source project popularity
and new contributors, in: ICSE ’22: Proceedings of the 44th
International Conference on Software Engineering, 2022.

H. Huang, Y. Lu, X. Mao, Gathering github oss requirements
from q&a community: An empirical study, in: 2020 25th Interna-
tional Conference on Engineering of Complex Computer Systems
(ICECCS), 2020.

S. Islam, Y. S. Nugroho, C. M. Shahrear, N. Wahed, D. Gunawan,
E. W. Pamungkas, M. H. Kabir, Y. I. Kurniawan, M. K. Uddin,
An empirical study of software ecosystem related tweets by npm
maintainers, Peer] Computer Science 10 (2024) e1669.

M. Tanzil, S. Chowdhury, S. Modaberi, G. Uddin, H. Hemmati,
A systematic mapping study of crowd knowledge enhanced soft-
ware engineering research using stack overflow, arXiv preprint
arXiv:2408.07913 (2024).

H. Hong, S. Woo, E. Choi, J. Choi, H. Lee, xvdb: A high-coverage
approach for constructing a vulnerability database, IEEE Access 10
(2022) 85050-85063.

S. Baltes, C. Treude, S. Diehl, Sotorrent: Studying the origin, evolu-
tion, and usage of stack overflow code snippets, in: 2019 IEEE/ACM

[51

(6]

(7]

(8]

[91

(10]

(11]

S.Yao et al.: Preprint submitted to Elsevier

Page 27 of 31

2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Information and Software Technology

16th International Conference on Mining Software Repositories
(MSR), IEEE, 2019, pp. 191-194.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, R. Oliveto,
Toxic code snippets on stack overflow, IEEE Transactions on
Software Engineering 47 (2019) 560-581.

S. Baltes, S. Diehl, Usage and attribution of stack overflow code
snippets in github projects, Empirical Software Engineering 24
(2019) 1259-1295.

S. S. Manes, O. Baysal, Studying the change histories of stack over-
flow and github snippets, in: 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021, pp. 283—
294. doi:10.1109/MSR52588. 2021.00040.

J. Han, E. Shihab, Z. Wan, S. Deng, X. Xia, What do programmers
discuss about deep learning frameworks, Empirical Software Engi-
neering 25 (2020) 2694-2747.

Y. Wu, J. Kropczynski, P. C. Shih, J. M. Carroll, Exploring the
ecosystem of software developers on github and other platforms, in:
Proceedings of the companion publication of the 17th ACM confer-
ence on Computer supported cooperative work & social computing,
2014, pp. 265-268.

S. Yao, Cross_platform_study,
Platform_Study, 2025.

S. Yao, X. Zhang, Y. Zhang, T. Wang, Open-
source_crossplatform_survey_data, 2025. doi:10.17632/m5hmnmxndr .
2.

GitHub, Inc., Let’s build from here, https: //github.com/about, 2024.
[Online; accessed: 2024-05-11].

S. Ovadia, Linux for academics, part ii: The advantages of free and
open-source software, Behavioral & Social Sciences Librarian 33
(2014) 47-51.

G. Schryen, R. Kadura, Open source vs. closed source software:
towards measuring security, in: Proceedings of the 2009 ACM
symposium on Applied Computing, 2009, pp. 2016-2023.

D. Bosio, B. Littlewood, L. Strigini, M. Newby, Advantages of open
source processes for reliability: clarifying the issues, in: Proceedings
of the Open Source Software Development Workshop, 2002, pp. 30—
46.
The
Source

https://github.com/YovM/Cross_

Linux Foundation, 6
Software Lowers

Reasons ~ Why
Development
https://www.linuxfoundation.org/blog/blog/

Open
Costs,

6-reasons-why-open-source-software-lowers-development-costs,
2024. [Online; accessed: 2024-05-13].

G. Gousios, M. Pinzger, A. v. Deursen, An exploratory study of the
pull-based software development model, in: Proceedings of the 36th
international conference on software engineering, 2014, pp. 345-
355.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and
productivity outcomes relating to continuous integration in github,
in: Proceedings of the 2015 10th joint meeting on foundations of
software engineering, 2015, pp. 805-816.

M. Wessel, J. Vargovich, M. A. Gerosa, C. Treude, Github actions:
the impact on the pull request process, Empirical Software Engi-
neering 28 (2023) 131.

M. Wessel, T. Mens, A. Decan, P. R. Mazrae, The github develop-
ment workflow automation ecosystems, in: Software Ecosystems:
Tooling and Analytics, Springer, 2023, pp. 183-214.

Y. Yu, H. Wang, G. Yin, T. Wang, Reviewer recommendation for
pull-requests in github: What can we learn from code review and
bug assignment?, Information and software technology 74 (2016)
204-218.

Y. Zhang, H. Wang, G. Yin, T. Wang, Y. Yu, Social media in github:
the role of @-mention in assisting software development, Science
China Information Sciences 60 (2017) 1-18.

L. Li, Z. Ren, X. Li, W. Zou, H. Jiang, How are issue units linked?
empirical study on the linking behavior in github, in: 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), IEEE, 2018, pp.
386-395.

2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

[42]

(43]

[44]

(45]

[46]

[47]

G. Gousios, D. Spinellis, Ghtorrent: Github’s data from a firehose,
in: 2012 9th IEEE Working Conference on Mining Software Repos-
itories (MSR), IEEE, 2012, pp. 12-21.

Matej Ba¢o, Why Discord Is a Must-Have for OSS, https://dev.
to/appwrite/why-discord-is-a-must-have-for-oss-2jpj, 2022. [On-
line; accessed: 2024-05-16].

Z. Zhao, Q. Yang, D. Cai, X. He, Y. Zhuang, Expert finding for
community-based question answering via ranking metric network
learning., in: Ijcai, volume 16, 2016, pp. 3000-3006.

H. Yuan, A. A. Hernandez, User cold start problem in recommenda-
tion systems: A systematic review, IEEE Access 11 (2023) 136958—
136977.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering—
a systematic literature review, Information and software technology
51 (2009) 7-15.

K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting
systematic mapping studies in software engineering: An update,
Information and software technology 64 (2015) 1-18.

B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, M. Lanza,
Opinion mining for software development: a systematic literature
review, ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 31 (2022) 1-41.

R. Santos, P. Soares, E. Rodrigues, P. H. M. Maia, A. Silveira, How
blockchain and microservices are being used together: a systematic
mapping study, in: Proceedings of the 5th International Workshop
on Emerging Trends in Software Engineering for Blockchain, 2022,
pp- 39-46.

C. H. C. Duarte, The quest for productivity in software engineering:
A practitioners systematic literature review, in: 2019 IEEE/ACM In-
ternational Conference on Software and System Processes (ICSSP),
IEEE, 2019, pp. 145-154.

F. Basso, B. M. Soares Ferreira, R. Torres, R. Z. Frantz, D. Kreutz,
M. Bernardino, E. de Macedo Rodrigues, Model-driven integration
and the oslc standard: a mapping of applied studies, in: Proceedings
of the 38th ACM/SIGAPP Symposium on Applied Computing,
2023, pp. 763-770.

P. R. I. Gomes, M. S. d. Castro, T. H. Nascimento, Gesture
recognition methods using sensors integrated into smartwatches:
Results of a systematic literature review, in: Proceedings of the XXII
Brazilian Symposium on Human Factors in Computing Systems,
2023, pp. 1-11.

C.Liu, X. Xia, D. Lo, C. Gao, X. Yang, J. Grundy, Opportunities and
challenges in code search tools, ACM Computing Surveys (CSUR)
54 (2021) 1-40.

M. Alhindi, J. Hallett, Sandboxing adoption in open source ecosys-
tems, in: Proceedings of the 12th ACM/IEEE International Work-
shop on Software Engineering for Systems-of-Systems and Software
Ecosystems, 2024, pp. 13-20.

R. C. Borges, M. d. G. Malheiros, C. Z. Billa, M. R. Pias, A. d. L.
Bicho, An open-source framework using webrtc for online multi-
player gaming, in: Proceedings of the 22nd Brazilian Symposium
on Games and Digital Entertainment, 2023, pp. 143-150.

R. Team, Advantages and disadvantages of google
scholar, 2024. URL: https://barrazacarlos.com/
advantages-and-disadvantages-of-google-scholar/, explores

the pros and cons of Google Scholar, including its wide accessibility
and citation tracking features, as well as limitations such as quality
control issues and lack of advanced filtering options.

G. Times, Does google scholar have peer-
reviewed articles?, 2024. URL: https://gbtimes.com/
does-google-scholar-have-peer-reviewed-articles/, discusses

the presence of peer-reviewed and non-peer-reviewed articles in
Google Scholar’s database, with approximate statistics provided.

N. Grattan, D. A. da Costa, N. Stanger, The need for more informa-
tive defect prediction: A systematic literature review, Information
and Software Technology (2024) 107456.

S.Yao et al.: Preprint submitted to Elsevier

Page 28 of 31

2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Information and Software Technology

A. S. Guinea, G. Nain, Y. Le Traon, A systematic review on the
engineering of software for ubiquitous systems, Journal of Systems
and Software 118 (2016) 251-276.

B. Vasilescu, V. Filkov, A. Serebrenik, Stackoverflow and github:
Associations between software development and crowdsourced
knowledge, in: 2013 International Conference on Social Computing,
IEEE, 2013, pp. 188-195.

S. L. Vadlamani, O. Baysal, Studying software developer expertise
and contributions in stack overflow and github, in: 2020 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2020, pp. 312-323.

H. Wang, T. Wang, G. Yin, C. Yang, Linking issue tracker with q&a
sites for knowledge sharing across communities, IEEE Transactions
on Services Computing 11 (2015) 782-795.

C. Tan, L. Lee, All who wander: On the prevalence and charac-
teristics of multi-community engagement, in: Proceedings of the
24th International Conference on World Wide Web, 2015, pp. 1056—
1066.

A. S. Badashian, A. Esteki, A. Gholipour, A. Hindle, E. Stroulia, In-
volvement, contribution and influence in github and stack overflow,
in: CASCON, 2014, pp. 19-33.

G. Silvestri, J. Yang, A. Bozzon, A. Tagarelli, et al., Linking
accounts across social networks: the case of stackoverflow, github
and twitter., in: KDWeb, 2015, pp. 41-52.

N. McDonald, S. Goggins, Performance and participation in
open source software on github, in: CHI ’13 Extended Abstracts
on Human Factors in Computing Systems, CHI EA 13, Asso-
ciation for Computing Machinery, New York, NY, USA, 2013,
p- 139144. URL: https://doi.org/10.1145/2468356.2468382. doi:10.
1145/2468356.2468382.

E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, D. M. Ger-
man, Open source-style collaborative development practices in
commercial projects using github, in: 2015 IEEE/ACM 37th IEEE
international conference on software engineering, volume 1, IEEE,
2015, pp. 574-585.

F. Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, S. Ying, Software effort
estimation based on open source projects: Case study of github,
Information and Software Technology 92 (2017) 145-157.

Y. Xiong, Z. Meng, B. Shen, W. Yin, Developer identity linkage
and behavior mining across github and stackoverflow, International
Journal of Software Engineering and Knowledge Engineering 27
(2017) 1409-1425.

W. Viechtbauer, L. Smits, D. Kotz, L. Budé, M. Spigt, J. Serroyen,
R. Crutzen, A simple formula for the calculation of sample size in
pilot studies, Journal of clinical epidemiology 68 (2015) 1375-1379.
J. R. Landis, G. G. Koch, The measurement of observer agreement
for categorical data, biometrics (1977) 159-174.

L. Yang, H. Zhang, H. Shen, X. Huang, X. Zhou, G. Rong, D. Shao,
Quality assessment in systematic literature reviews: A software
engineering perspective, Information and Software Technology 130
(2021) 106397.

C. Gomes, J. P. Fernandes, G. Falcao, S. Kar, S. Tayur, A systematic
mapping study on quantum and quantum-inspired algorithms in
operations research, ACM Computing Surveys 57 (2024) 1-35.

T. Wood, S. Perera, S. Yan, L. Padgham, A. Moffat, Core rankings
portal, https://www.core.edu.au/home, 2021. Accessed: 2021-05.

S. Elder, M. R. Rahman, G. Fringer, K. Kapoor, L. Williams, A
survey on software vulnerability exploitability assessment, ACM
Computing Surveys 56 (2024) 1-41.

D. Amalfitano, S. Faralli, J. C. R. Hauck, S. Matalonga, D. Distante,
Artificial intelligence applied to software testing: A tertiary study,
ACM Computing Surveys 56 (2023) 1-38.

S. Mosikyan, R. Dolan, A. M. Corsi, S. Bastian, A systematic
literature review and future research agenda to study consumer
acceptance of novel foods and beverages, Appetite (2024) 107655.
S. Keele, et al., Guidelines for performing systematic literature
reviews in software engineering, Technical Report, Technical report,
ver. 2.3 ebse technical report. ebse, 2007.

2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

(68]

[69]

(70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

[83]

(84]

[85]

(86]

T. Zimmermann, Card-sorting: From text to themes, in: Perspectives
on data science for software engineering, Elsevier, 2016, pp. 137-
141.

S. H. Khandkar, Open coding, University of Calgary 23 (2009)
2009.

Y. Fan, Y. Zhang, S. Hou, L. Chen, Y. Ye, C. Shi, L. Zhao, S. Xu,
idev: Enhancing social coding security by cross-platform user iden-
tification between github and stack overflow, in: 28th International
Joint Conference on Artificial Intelligence (IICAI), 2019, 2019.
Z.Zhao, Y. Chen, A. A. Bangash, B. Adams, A. E. Hassan, An em-
pirical study of challenges in machine learning asset management,
Empirical Software Engineering 29 (2024) 98.

R. Saxena, N. Pedanekar, I know what you coded last summer:
Mining candidate expertise from github repositories, in: Companion
of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, 2017, pp. 299-302.

H.Li, F. Khomh, M. Openja, et al., Understanding quantum software
engineering challenges an empirical study on stack exchange forums
and github issues, in: 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2021, pp.
343-354.

M. R. Masud, B. Treves, M. Faloutsos, Disambiguating usernames
across platforms: the geekman approach, Social Network Analysis
and Mining 14 (2024) 177.

M. Papoutsoglou, J. Wachs, G. M. Kapitsaki, Mining dev for
social and technical insights about software development, in:
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), IEEE, 2021, pp. 415-419.

H. Jiang, L. Shi, M. Che, Y. Zhang, Q. Wang, Bringing open source
communication and development together: A cross-platform study
on gitter and github, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 50 (2024) 2807-2826.

P. Shrestha, A. Sathanur, S. Maharjan, E. Saldanha, D. Arendt,
S. Volkova, Multiple social platforms reveal actionable signals
for software vulnerability awareness: A study of github, twitter and
reddit, PLOS ONE 15 (2020) ¢0230250.

V. Kifer, D. Graziotin, I. Bogicevic, S. Wagner, J. Ramadani,
Poster: Communication in open-source projectsend of the e-mail
era? (2018) 242-243.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, M. Lanza, On the rise of
modern software documentation (pearl/brave new idea), in: 37th
European Conference on Object-Oriented Programming (ECOOP
2023), Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2023.

S. Heckman, J. King, Developing software engineering skills using
real tools for automated grading, in: Proceedings of the 49th ACM
technical symposium on computer science education, 2018, pp. 794—
799.

M. Wu, R. Aranovich, V. Filkov, Evolution and differentiation of the
cybersecurity communities in three social question and answer sites:
A mixed-methods analysis, Plos one 16 (2021) €0261954.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, B. Hartmann,
Design lessons from the fastest q&a site in the west, in: Proceedings
of the SIGCHI conference on Human factors in computing systems,
2011, pp. 2857-2866.

Y. Fan, T. Xiao, H. Hata, C. Treude, K. Matsumoto, " my github
sponsors profile is live!" investigating the impact of twitter/x men-
tions on github sponsors, in: Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1-12.
C. Tranoris, S. Denazis, Smart city issue management: Extending
and adapting a software bug tracking system, in: 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS), IEEE, 2018, pp. 1264-1270.
Jenkins Project, Jenkins: Build great things at any scale, https:
//jenkins.io/, 2017. Accessed: 2017.

A. Galappaththi, S. Nadi, C. Treude, An empirical study of api mis-
uses of data-centric libraries, in: Proceedings of the 18th ACM/IEEE

S.Yao et al.: Preprint submitted to Elsevier

Page 29 of 31

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Information and Software Technology

International Symposium on Empirical Software Engineering and 2372 [104] C. Wang, Z. Chen, M. Zhou, Automl from software engineering

Measurement, 2024, pp. 245-256.

M.J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on
deep learning bug characteristics, in: Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference
and symposium on the foundations of software engineering, 2019,
pp. 510-520.

M. Bagherzadeh, N. Fireman, A. Shawesh, R. Khatchadourian,
Actor concurrency bugs: a comprehensive study on symptoms, root
causes, api usages, and differences, Proceedings of the ACM on
Programming Languages 4 (2020) 1-32.

M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, A. K.
Motlagh, An empirical study of c++ vulnerabilities in crowd-
sourced code examples, IEEE Transactions on Software Engineering
48 (2020) 1497-1514.

X. Chen, F. Xu, Y. Huang, X. Zhou, Z. Zheng, An empirical study
of code reuse between github and stack overflow during software
development, Journal of Systems and Software 210 (2024) 111964.
R. Croft, Y. Xie, M. Zahedi, M. A. Babar, C. Treude, An empirical
study of developers discussions about security challenges of different
programming languages, Empirical Software Engineering 27 (2022)
1-52.

Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, X. Liu, An
empirical study on deployment faults of deep learning based mobile
applications, in: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), IEEE, 2021, pp. 674-685.

M. R. H. Misu, A. Satter, An exploratory study of analyz-
ing javascript online code clones, in: Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension,
2022, pp. 94-98.

T. Zhang, D. Yang, C. Lopes, M. Kim, Analyzing and supporting
adaptation of online code examples, in: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), IEEE,
2019, pp. 316-327.

B. Zhang, T. Liu, P. Liang, C. Wang, M. Shahin, J. Yu, Architecture
decisions in ai-based systems development: an empirical study, in:
2023 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), IEEE, 2023, pp. 616-626.

K. Luong, F. Thung, D. Lo, Arsearch: searching for api related
resources from stack overflow and github, in: Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, 2022, pp. 11-15.

S. Baltes, R. Kiefer, S. Diehl, Attribution required: Stack overflow
code snippets in github projects, in: 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Companion (ICSE-C),
1EEE, 2017, pp. 161-163.

P. Chakraborty, R. Shahriyar, A. Igbal, G. Uddin, How do developers
discuss and support new programming languages in technical q&a
site? an empirical study of go, swift, and rust in stack overflow,
Information and Software Technology 137 (2021) 106603.

X. Chen, W. Pei, S. Yang, Y. Zhou, Z. Zhang, J. Pei, Automatic title
completion for stack overflow posts and github issues, Empirical
Software Engineering 29 (2024) 120.

I. C. Irsan, T. Zhang, F. Thung, K. Kim, D. Lo, Picaso: enhanc-
ing api recommendations with relevant stack overflow posts, in:
2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), IEEE, 2023, pp. 92-37.

I. Smirnova, M. Reitzig, O. Alexy, What makes the right oss
contributor tick? treatments to motivate high-skilled developers,
Research Policy 51 (2022) 104368.

R. Bidar, M. Jabbari, E. Luck, Value co-destruction in online
collaborative networks, European Management Journal 42 (2024)
98-107.

A. Reinhardt, T. Zhang, M. Mathur, M. Kim, Augmenting stack
overflow with api usage patterns mined from github, in: Proceedings
of the 2018 26th ACM joint meeting on European software engi-
neering conference and symposium on the foundations of software
engineering, 2018, pp. 880-883.

2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

perspective: Landscapes and challenges, in: 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR),
IEEE, 2023, pp. 39-51.

M. M. Morovati, A. Nikanjam, F. Khomh, Z. M. Jiang, Bugs in
machine learning-based systems: a faultload benchmark, Empirical
Software Engineering 28 (2023) 62.

A.S.Badashian, A. Hindle, E. Stroulia, Crowdsourced bug triaging,
in: 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2015, pp. 506-510.

X. Zhou, P. Liang, B. Zhang, Z. Li, A. Ahmad, M. Shahin,
M. Waseem, Exploring the problems, their causes and solutions of
ai pair programming: A study on github and stack overflow, Journal
of Systems and Software 219 (2025) 112204.

C. Treude, M. Wagner, Predicting good configurations for github and
stack overflow topic models, in: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), IEEE, 2019,
pp. 84-95.

V. Klotzman, F. Farmahinifarahani, C. Lopes, Public software
development activity during the pandemic, in: Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2021, pp. 1-12.

M. M. Rahman, C. K. Roy, D. Lo, Rack: Code search in the ide using
crowdsourced knowledge, in: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), IEEE,
2017, pp. 51-54.

S. Mahajan, N. Abolhassani, M. R. Prasad, Recommending stack
overflow posts for fixing runtime exceptions using failure scenario
matching, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1052-1064.

M. J. Islam, R. Pan, G. Nguyen, H. Rajan, Repairing deep neural
networks: Fix patterns and challenges, in: Proceedings of the
ACM/IEEE 42nd international conference on software engineering,
2020, pp. 1135-1146.

X. Liu, D. Gu, Z. Chen, J. Wen, Z. Zhang, Y. Ma, H. Wang, X. Jin,
Rise of distributed deep learning training in the big model era: From
a software engineering perspective, ACM Transactions on Software
Engineering and Methodology 32 (2023) 1-26.

Y. Wang, Y. Wang, S. Wang, Y. Liu, C. Xu, S.-C. Cheung, H. Yu,
Z. Zhu, Runtime permission issues in android apps: Taxonomy,
practices, and ways forward, IEEE Transactions on Software En-
gineering 49 (2022) 185-210.

T. Zhang, Y. Lu, Y. Yu, X. Mao, Y. Zhang, Y. Zhao, How do
developers adapt code snippets to their contexts? an empirical study
of context-based code snippet adaptations, IEEE Transactions on
Software Engineering (2024).

S. S. Manes, O. Baysal, How often and what stackoverflow posts do
developers reference in their github projects?, in: 2019 IEEE/ACM
16th International Conference on Mining Software Repositories
(MSR), IEEE, 2019, pp. 235-2309.

M. Waseem, T. Das, A. Ahmad, P. Liang, T. Mikkonen, Issues and
their causes in webassembly applications: An empirical study, in:
Proceedings of the 28th International Conference on Evaluation and
Assessment in Software Engineering, 2024, pp. 170-180.

S. Subramanian, L. Inozemtseva, R. Holmes, Live api documenta-
tion, in: Proceedings of the 36th international conference on software
engineering, 2014, pp. 643-652.

A. Jallow, M. Schilling, M. Backes, S. Bugiel, Measuring the effects
of stack overflow code snippet evolution on open-source software
security (2024).

C. Zimmerle, K. Gama, F. Castor, J. M. M. Filho, Mining the
usage of reactive programming apis: a study on github and stack
overflow, in: Proceedings of the 19th International Conference on
Mining Software Repositories, 2022, pp. 203-214.

V. Singh, S. Chakraborty, A. Kadian, The effect of knowledge
sharing on open source contribution: a multi-platform perspective
(2020).

S.Yao et al.: Preprint submitted to Elsevier

Page 30 of 31

2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

131

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Information and Software Technology

D. Yang, P. Martins, V. Saini, C. Lopes, Stack overflow in github: any 2507 [141] B. Yu, C. Zhang, Z. Tang, Missing data processing based on deep

snippets there?, in: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), IEEE, 2017, pp. 280-290.
N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
P. Tonella, Taxonomy of real faults in deep learning systems, in:
Proceedings of the ACM/IEEE 42nd international conference on
software engineering, 2020, pp. 1110-1121.

S. K. Kuttal, X. Chen, Z. Wang, S. Balali, A. Sarma, Visual resume:
Exploring developers online contributions for hiring, Information
and Software Technology 138 (2021) 106633.

C. Flores-Saviaga, S. Savage, Fighting disaster misinformation in
latin america: the# 19s mexican earthquake case study, Personal 2518
and Ubiquitous Computing 25 (2021) 353-373. 2519
C. Hundhausen, P. Conrad, O. Adesope, A. Tariq, Combining 2520
github, chat, and peer evaluation data to assess individual contribu- 2521
tions to team software development projects, ACM Transactions on 2522
Computing Education 23 (2023) 1-23.
H. Sahar, A. Hindle, C.-P. Bezemer, How are issue reports discussed 2524
in gitter chat rooms?, Journal of Systems and Software 172 (2021) 2525
110852.
H. Jiang, L. Shi, M. Che, Y. Zhang, Q. Wang, Bringing open source 2527
communication and development together: A cross-platform study 2528
on gitter and github, IEEE Transactions on Software Engineering 2520
(2024).

M. Chen, G. Li, C. Ma, J. Li, H. Fu, Repo4qa: Answering coding
questions via dense retrieval on github repositories, in: 29th Inter-
national Conference on Computational Linguistics (COLING 2022),
2022, pp. 1580-1592.

E. Koshchenko, E. Klimov, V. Kovalenko, Multimodal recom-
mendation of messenger channels, in: Proceedings of the 19th
International Conference on Mining Software Repositories, 2022,
pp. 495-505.

H. Fang, D. Klug, H. Lamba, J. Herbsleb, B. Vasilescu, Need for
tweet: How open source developers talk about their github work
on twitter, in: MSR ’20: Proceedings of the 17th International
Conference on Mining Software Repositories, 2020.

M. A. Harysi, B. Negoita, J. Nandhakumar, The evolution of leader-
ship structures in online communities: A social network perspective
(2019).

L. Singer, F. Figueira Filho, M.-A. Storey, Software engineering
at the speed of light: how developers stay current using twitter,
in: Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 211-221. 2549
L. Bo, Y. He, X. Sun, W. Ji, X. Wu, A software bug fixing approach 2ss0
based on knowledge-enhanced large language models, in: 2024 2551
IEEE 24th International Conference on Software Quality, Reliability 2552
and Security (QRS), IEEE, 2024, pp. 169-179.
Z. Kotti, R. Galanopoulou, D. Spinellis, Machine learning for 2ss4
software engineering: A tertiary study, ACM Computing Surveys

55 (2023) 1-39.

G. Gousios, The ghtorent dataset and tool suite, in: 2013 10th Work-

ing Conference on Mining Software Repositories (MSR), IEEE,
2013, pp. 233-236.

J. Martin, J. L. Guo, Deep api learning revisited, in: Proceedings of

the 30th IEEE/ACM International Conference on Program Compre-
hension, 2022, pp. 321-330.

M. Wessel, B. M. De Souza, I. Steinmacher, 1. S. Wiese, 1. Polato,

A. P. Chaves, M. A. Gerosa, The power of bots: Characterizing
and understanding bots in oss projects, Proceedings of the ACM

on Human-Computer Interaction 2 (2018) 1-19.

Y. Zhou, X. Lu, G. Gao, Q. Mei, W. Ai, Emoji promotes developer
participation and issue resolution on github, in: Proceedings of
the International AAAI Conference on Web and Social Media,
volume 18, 2024, pp. 1833-1846.

J. Howison, A. Wiggins, K. Crowston, Validity issues in the use

of social network analysis with digital trace data, Journal of the
Association for Information Systems 12 (2011) 2.

2508
2509
2510
2511
2512
2513
2514
2515
2516
2517

2523

2526

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

2553

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

neural network enhanced by k-means, in: Proceedings of the 2019
11th International Conference on Machine Learning and Computing,
2019, pp. 151-155.

J. Yan, H. Sun, X. Wang, X. Liu, X. Song, Profiling developer exper-
tise across software communities with heterogeneous information
network analysis, in: Proceedings of the 10th Asia-Pacific Sympo-
sium on Internetware, Internetware ’18, Association for Computing
Machinery, New York, NY, USA, 2018. URL: https://doi.org/10.
1145/3275219.3275226. d0i:10.1145/3275219.3275226.

H. Shao, D. Sun, J. Wu, Z. Zhang, A. Zhang, S. Yao, S. Liu,
T. Wang, C. Zhang, T. Abdelzaher, paper2repo: Github repository
recommendation for academic papers, in: Proceedings of The Web
Conference 2020, 2020, pp. 629-639.

W. Tao, Y. Zhou, Y. Wang, H. Zhang, H. Wang, W. Zhang, Kadel:
Knowledge-aware denoising learning for commit message genera-
tion, ACM Transactions on Software Engineering and Methodology
(2024).

Y. Huang, F. Xu, H. Zhou, X. Chen, X. Zhou, T. Wang, Towards
exploring the code reuse from stack overflow during software de-
velopment, in: Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, 2022, pp. 548-559.

M. Yang, Y. Zhou, B. Li, Y. Tang, On code reuse from stackover-
flow: An exploratory study on jupyter notebook, arXiv preprint
arXiv:2302.11732 (2023).

C. Osborrne, J. Ding, H. R. Kirk, The ai community building the
future? a quantitative analysis of development activity on hugging
face hub, Journal of Computational Social Science (2024) 1-39.
M. White, I. Haddad, C. Osborne, X.-Y. L. Yanglet, A. Abdelmonsef,
G. A. Commons, S. M. Varghese, The model openness frame-
work: Promoting completeness and openness for reproducibility,
transparency, and usability in artificial intelligence, arXiv preprint
arXiv:2403.13784 (2024).

E. Bogomolov, A. Eliseeva, T. Galimzyanov, E. Glukhov, A. Shap-
kin, M. Tigina, Y. Golubev, A. Kovrigin, A. van Deursen, M. Izadi,
et al., Long code arena: a set of benchmarks for long-context code
models, arXiv preprint arXiv:2406.11612 (2024).

S. Dueinas, V. Cosentino, J. M. Gonzalez-Barahona, A. d. C. San Fe-
lix, D. Izquierdo-Cortazar, L. Cafias-Diaz, A. P. Garcia-Plaza, Gri-
moirelab: A toolset for software development analytics, Peer]
Computer Science 7 (2021) e601.

S. Duenas, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona,
Perceval: software project data at your will, in: Proceedings of the
40th international conference on software engineering: companion
proceeedings, 2018, pp. 1-4.

P. Runeson, M. Host, Guidelines for conducting and reporting
case study research in software engineering, Empirical software
engineering 14 (2009) 131-164.

S.Yao et al.: Preprint submitted to Elsevier

Page 31 of 31

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

1 The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Open source oriented cross-platform survey
	CRediT authorship contribution statement
	Data availability

