
DevRec: A Developer Recommendation System
for Open Source Repositories

Xunhui Zhang(B), Tao Wang, Gang Yin, Cheng Yang, Yue Yu,
and Huaimin Wang

National University of Defense Technology, Changsha, Hunan, China
{zhangxunhui,taowang2005,yingang,yuyue,hmwang}@nudt.edu.cn,

delpiero710@126.com

Abstract. The crowds’ active contribution is one of the key factors for
the continuous growth and final success of open source software. With
the massive amounts of competitions, how to find and attract the right
developers to engage in is quite a crucial yet challenging problem for
open source projects. Most of the current works mainly focus on rec-
ommending experts to specific fine-grained software engineering tasks
and the candidates are often confined to the internal developers of the
project. In this paper, we propose a recommendation system DevRec
which combines users’ activities in both social coding and questioning
and answering (Q&A) communities to recommend developer candidates
to open source projects from all over the community. The experiment
results show that DevRec is good at solving cold start problem, and per-
forms well at recommending proper developers for open source projects.

Keywords: Developer recommendation · Collaborative Filtering ·
StackOverflow · GitHub

1 Introduction

Nowadays, open source software (OSS) has formed a brand-new development
paradigm and achieved its unprecedented success. Compared to the traditional
software development in industry, open source software is driven by a massive
number of stackholders including developers, users, managers and so on. These
stakeholders involve in OSS projects by interests, and most of them have their
own full-time job and only spend spare time on OSS. Although crowds may join
in an OSS project occasionally, and then withdraw from it at any time, OSS
has achieved great success at creating high-quality software like Linux, MySQL,
Spark and so on. Nowadays, OSS is viewed as “eating the software world” by
the Future of Open Source Survey [1].

On GitHub alone, one of the largest open source communities, there are more
than 48 million open source projects hosted. However, according to our statistics,
95.2% of them do not received any attention by public (i.e. no watcher and forked
repository) and 15.1% of them were not updated for more than one year. Even for
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-56856-0 1

4 X. Zhang et al.

those projects which used to experience their success will languish without the
crowds’ continuous contributions. Therefore, to find and attract the right devel-
opers to participate in is quite crucial for OSS.

However, due to the massive amounts of competitive OSS, the crowds are
often limited by their time and energy to choose from all the related projects.
An automatic approach to bridge the gap between developers and projects is
useful for both the developers and projects. In this paper, we propose a hybrid
recommendation system called DevRec, which combines the development activity
(DA)1 based approach and knowledge sharing activity (KA)2 based approach
respectively to recommend proper developers for open source projects. The main
contributions of this paper include:

– We propose a DA-based recommendation approach, by mining the crowds’
development activities to discover and recommend proper collaborators for a
given project from all over the community.

– We combine the developers’ knowledge sharing and development activities,
which helps to solve the cold-start problem for newly released projects.

– We conducted experiments on a large-scale dataset containing 165,741 projects
and 72,877 developers, to show the effectiveness of our approach.

2 Related Work

In the age of global and distributed software development, finding the right
person to collaborate and complete the right task is of great importance.
Bhattacharya et al. [2] employed the incremental learning approach and multi-
feature tossing graphs to improve the bug triaging. Xuan et al. [3] combined
network analyzing and text classification approaches to recommend proper devel-
opers for a specific bug. Yu et al. [4–6] analyzed the pull-request mechanism,
and embedded the social factors into typical recommendation approaches of bug
triaging, to recommend pull-request reviewers. Besides, there are some works
related to software recommendation. Lingxiao Zhang et al. [7] recommended rel-
evant projects according to the relationship between developers and projects.
Naoki Orii combined the probabilistic matrix factorization and topic model
method to recommend repositories to programmers [8]. Different from these
works, our work aims to recommend developers at the granularity of repository
and the range of the whole software community.

There are also many researches focusing on the interplay between Q&A and
social coding communities. Bogdan Vasilescu et al. [9] did some researches about
the relationship of users’ activities between StackOverflow and GitHub. Wang
et al. [10] proposed an approach to link Android issues and corresponding dis-
cussions. Giuseppe Silvestri et al. [11] studied whether the relative importance of
users vary across social networks, including StackOverflow, GitHub and Twitter.

1 development activity: users’ activities in social coding communities.
2 knowledge sharing activity: users’ activities in Q&A communities.

DevRec: A Developer Recommendation System for Open Source Repositories 5

Venkataramani et al. [12] recommended suitable experts from GitHub to Stack-
Overflow questions, taking developers’ reputation into account. However, there
are few studies about recommending users in Q&A communities to OSS, which
gives full play to users’ expertise and helps to speed up the rate of development.

3 Recommendation Approach

3.1 Overview of Recommendation System

DevRec explores the activities in social coding and Q&A communities to measure
the technical distance between a given project and the developers, and combines
the two results together to rank and recommend developer candidates for OSS.
The architecture of DevRec is shown in Fig. 1.

Fig. 1. Architecture of DevRec

Data Extraction: This step aims to gather datasets from StackOverflow and
GitHub, and generate the user tag and user project association matrix.

Separate Recommendation: When a project comes, we calculate the rel-
evance of each candidate according to the user association matrix, which is
obtained from the user project and user tag association matrix.

Recommendation Integration: We combine the separate results by weight,
and finally get the recommendation results for the hybrid approach.

3.2 Developer Recommendation Based on Social Coding Activities

There are kinds of activities in GitHub, including commit, fork and watch, which
represent developers’ interests to specific repositories. The basic intuition of this
approach is that developers with similar technical interests tend to have similar
development activities [7]. There are three parts in this approach.

UP Connector: This part is to create the association matrix of users and
projects based on the activities in GitHub. Here we get a two-value matrix
Ru−p, where 1 stands for participation and 0 stands for the opposite.

6 X. Zhang et al.

User Connector: This part is to calculate the association between users based
on the user project association matrix using Jaccard algorithm.

Match Engine: In this part, we calculate the association between users
and projects according to the user association matrix Ru−u. If we use
UAp〈u1, u2, ..., un〉 to represent users that have already participated in the tar-
get project p, we can obtain the match score of each user towards project p
using Eq. 1.

result =
|UAp|∑

i=1

Ru−u[UAp[i]] (1)

3.3 Developer Recommendation Based on Knowledge Sharing
Activities

Asking and answering technical questions are common activities among devel-
opers. Those with similar technical interests tend to focus on same posts, which
are marked by same tags, and We suppose that they also tend to participate in
the same kind of repositories. There are four parts in this approach.

Tag Extractor: This part is used to extract the fields that users proficient
in. We consider that tags that mark users’ related posts can represent user’s
interests or research fields.

Relation Creator: In this part, we calculate the user tag association matrix.
Here we use TF-IDF method. If we use U{u1, u2, ..., un} to represent users in
StackOverflow, Tu = {t1, t2, ..., tn} to represent the tags that related to user u,
and C(t, u) to represent the number of times tag t relates to user u. Then we
can calculate user tag association matrix using Eq. 2.

Ru−t(u, t) =
C(t, u)

∑|Tu|
i=1 C(Tu[i], u)

∗ log(

∑|U |
k=1

∑|TU[k]|
q=1 C(TU [k][q], U [k])

∑|U |
j=1 C(t, U [j])

) (2)

User Connector: After obtaining the user tag association matrix Ru−t, we
calculate the association of users using Vector Space Similarity algorithm.

Match Engine: The same as the match engine part in DA-based approach.

3.4 Hybrid Approach for Developer Recommendation

According to the above two approaches, we can get two recommendation results
of the same repository. The combination of the two approaches takes users’ activ-
ities into consideration comprehensively, and will probably improve the recom-
mendation results. The specific steps are as follows:

Overlapped candidates’ selection: Applying the aforementioned approaches
and getting the top 10000 recommendation results of each project. Finding the
same candidates in both sets by calculating the intersection.

DevRec: A Developer Recommendation System for Open Source Repositories 7

Overlapped candidates’ ranking: Setting a balance proportional coefficient
which assign different weights for different approaches. The rank of the candi-
dates is calculated with Eq. 3.

rank = WDA ∗ rankDA + WKA ∗ rankKA (3)

In which WDA

WKA
is the proportional coefficient of DA-based and KA-based

approaches, and rankDA and rankKA represent the ranks of the candidates of
the two approaches. Initially, we set the coefficient to 0.75

0.25 .

4 Experiment

4.1 Research Questions

In order to verify the effectiveness of our recommendation approaches and
explore the influence when considering about different repositories. We focus
on the following two research questions.

– Q1: What is the performance difference among three approaches over reposi-
tories with different popularities?

– Q2: How will the balance coefficient between the two kinds of activities affect
the recommendation performance?

4.2 Experiment Datasets

To address the above research questions and validate our approach, we use the
data in GitHub and StackOverflow. Here we choose the GHTorrent3 MySQL
dump released on March 2016, and the 2015 snapshot of StackExchange4.

We find users both active in StackOverflow and GitHub by matching email
MD5. After removing fake or deleted users, 72,877 left. For projects, we get
1,355,043 that at least one of the related users participated in before point-in-
time (2014-09-14) and 165,741 projects that have new users after point-in-time.

We use h.d. (history developers) to represent the number of related users
who focused on projects before point-in-time, and l.d. (latent developers) means
the number of users who participate in the projects after point-in-time for the
first time. Here we just consider about the projects that are popular after point-
in-time because these projects can be used to validate the effectiveness of the
approaches. After filtering, we get 136 popular projects whose h.d. bigger than
300 and l.d. bigger than 300. Also, we get 99 unpopular projects whose h.d. less
than 2 and l.d. bigger than 100.

3 http://ghtorrent.org/downloads.html.
4 https://archive.org/details/stackexchange.

http://ghtorrent.org/downloads.html
https://archive.org/details/stackexchange

8 X. Zhang et al.

4.3 Evaluation Metrics

Accuracy: We use the accuracy to represent the availability of approaches,
which is calculated by the division of the number of matched projects and the
total number of test projects.

MRR: Mean Reciprocal Rank is widely used to evaluate the performance of
recommendation systems. If the correct results rank in the front, the MRR value
is high. Here, we use ranki to represent the rank of result i, P{p1, p2, ..., pn} to
represent the set of test repositories, and Rp{r1, r2, ..., rm} to represent correctly
matched results for project p. Then the MRR value is shown in Eq. 4.

MRR =
1

|P |
|P |∑

i=1

(
1

|RP [i]|
|RP [i]|∑

j=1

1
rankRP [i][j]

) (4)

5 Experiment Results

5.1 Influence of Different Activities Towards Different Projects

Figures 2 and 3 present the accuracy of three different recommendation
approaches for unpopular and popular projects. From the two figures, we can
see that the accuracy of DA-based approach is better than that of KA-based
approach. That is to say, the development activity is more important when rec-
ommending, which is consistent with reality. Developers may focus on many
techniques, but will just apply one or two when developing projects. Asking or
answering a question is much easier than following a repository.

Fig. 2. Accuracy for unpopular projects Fig. 3. Accuracy for popular projects

In Fig. 2, the hybrid approach performs the best, which means that for unpop-
ular projects, knowledge sharing activity can help to improve the result. The
reason is that the user association matrix generated from StackOverflow is more
dense than that from GitHub. In Fig. 3, for popular projects, hybrid approach
doesn’t perform the best. This is because there are many developers focusing on

DevRec: A Developer Recommendation System for Open Source Repositories 9

Table 1. MRR for unpopular and popular projects (coefficient = 0.75
0.25

)

Unpopular repositories

5 10 15 20 25 30 35 40 45 50

KA-based .445 .295 .246 .229 .198 .172 .164 .155 .145 .136

DA-based .472 .323 .267 .206 .176 159 .142 .134 .126 .120

Hybrid .503 .355 .241 .208 .182 .166 .148 .138 .126 .112

Increase rate (%) 6.57 9.91 −9.74 0.97 3.41 4.40 4.23 2.99 0 −6.67

Popular repositories

KA-based .380 .187 .135 .113 .100 .085 .071 .063 .059 .052

DA-based .491 .321 .263 .225 .193 .167 .149 .135 .125 .117

Hybrid .568 .362 .281 .244 .208 .170 .148 .134 .123 .115

Increase rate (%) 15.7 12.8 6.84 8.44 7.77 1.80 −0.67 −0.74 −1.6 −1.7

the target project before point-in-time, which increases the prepared information
for Collaborative Filtering algorithm.

From Table 1, we can see that hybrid approach tends to hit correct results in
the front very often.

5.2 Influence of Different Coefficient Values in Hybrid Approach

Figures 4 and 5 show that coefficient value will influence the hybrid approach. In
Fig. 4, the accuracy of hybrid approach increases with the decrease of coefficient
value when recommending 5 to 10 developers to unpopular projects. However,
for popular projects in Fig. 5, the result is opposite.

Meanwhile, Table 2 shows that for unpopular projects, the MRR of hybrid
approach increases a lot when setting the coefficient to 0.25

0.75 , however decreases
a lot for popular projects. Compare Table 2 to Table 1, when considering about
MRR, small coefficient is more stable for unpopular projects because all the

Fig. 4. Accuracy for unpopular projects
with different coefficients

Fig. 5. Accuracy for popular projects
with different coefficients

10 X. Zhang et al.

Table 2. MRR for unpopular and popular projects (coefficient = 0.25
0.75

)

Unpopular repositories

5 10 15 20 25 30 35 40 45 50

KA-based .445 .295 .246 .229 .198 .172 .164 .155 .145 .136

DA-based .472 .323 .267 .206 .176 159 .142 .134 .126 .120

Hybrid .483 .357 .297 .250 .213 .178 .161 .148 .142 .131

Increase rate (%) 2.33 10.5 11.2 21.4 21.0 11.9 13.4 10.4 12.7 9.17

Popular repositories

KA-based .380 .187 .135 .113 .100 .085 .071 .063 .059 .052

DA-based .491 .321 .263 .225 .193 .167 .149 .135 .125 .117

Hybrid .394 .286 .228 .188 .159 .143 .131 .120 .109 .102

Increase rate (-%) 19.8 10.9 13.3 16.4 17.6 14.4 12.1 11.1 12.8 12.8

increasing rate are positive, however big coefficient is more suitable for popular
projects with hybrid approach because the increasing rate tends to be positive.

In conclusion, using hybrid approach with small coefficient value to recom-
mend for unpopular projects will get better accuracy and MRR value at the
same time compared with DA-based approach. However, for popular projects, if
the target repository considers more about the accuracy (wants to get suitable
developers more probably), then choose DA-based approach. If it considers more
about the MRR (wants to get suitable developers with fewer results), then use
hybrid approach with big coefficient.

Acknowledgements. The research is supported by the National Natural Science
Foundation of China (Grant No.61432020,61472430,61502512,61303064) and National
Grand R&D Plan (Grant No. 2016-YFB1000805).

References

1. Silic, M.: Dual-use open source security software in organizations-Dilemma: help
or hinder? Comput. Secur. 39, 386–395 (2013)

2. Bhattacharya, P., Neamtiu, I., Shelton, C.R.: Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. J. Syst. Softw. 85(10),
2275–2292 (2012)

3. Xuan, J., Jiang, H., Ren, Z., Zou, W.: Developer prioritization in bug repositories.
In: ICSE, vol. 8543, no: 1, pp. 25–35 (2012)

4. Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B.: Wait for it: determinants
of pull request evaluation latency on GitHub. In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories (MSR), pp. 367–371. IEEE (2015)

5. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in GitHub: what can we learn from code review and bug assignment? Inf. Softw.
Technol. 74, 204–218 (2016)

DevRec: A Developer Recommendation System for Open Source Repositories 11

6. Yu, Y., Wang, H., Yin, G., Ling, C.X.: Reviewer recommender of pull requests in
GitHub. In: ICSME, pp. 609–612. IEEE (2014)

7. Zhang, L., Zou, Y., Xie, B., Zhu, Z.: Recommending relevant projects via user
behaviour: an exploratory study on GitHub (2014)

8. Orii, N.: Collaborative topic modeling for recommending GitHub repositories
(2012)

9. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: associations
between software development and crowdsourced knowledge. In: ASE/IEEE Inter-
national Conference on Social Computing, pp. 188–195 (2013)

10. Wang, H., Wang, T., Yin, G., Yang, C.: Linking issue tracker with q and a sites
for knowledge sharing across communities. IEEE Trans. Serv. Comput. PP, 1–14
(2015)

11. Silvestri, G., Yang, J., Bozzon, A., Tagarelli, A.: Linking accounts across social
networks: the case of stackoverflow, github and twitter. In: International Workshop
on Knowledge Discovery on the WEB, pp. 41–52 (2015)

12. Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., Bhat, V.: Discovery of
technical expertise from open source code repositories. In: International Conference
on World Wide Web Companion, pp. 97–98 (2013)

	DevRec: A Developer Recommendation System for Open Source Repositories
	1 Introduction
	2 Related Work
	3 Recommendation Approach
	3.1 Overview of Recommendation System
	3.2 Developer Recommendation Based on Social Coding Activities
	3.3 Developer Recommendation Based on Knowledge Sharing Activities
	3.4 Hybrid Approach for Developer Recommendation

	4 Experiment
	4.1 Research Questions
	4.2 Experiment Datasets
	4.3 Evaluation Metrics

	5 Experiment Results
	5.1 Influence of Different Activities Towards Different Projects
	5.2 Influence of Different Coefficient Values in Hybrid Approach

	References

