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Abstract—With the popularity of the open source, the open 
source community has accumulated a large number of open 
source project. While these massive projects provide developers 
with rich reusable resource, they also bring difficulties for users 
to choose the appropriate software. Therefore, it is very 
meaningful to rank the software and tell users which is better. In 
this paper, we propose a novel approach that ranks software 
based on a global perspective different from traditional software 
evaluation and ranking methods . We evaluate the software from 
four dimensions, namely community popularity, development 
activity, software health and team health. Each dimension 
contains some metrics. We demonstrate the effectiveness of our 
method through comparative experiments. This method has been 
integrated into to the OSSEAN platform to form a software 
leaderboard.  

Keywords-open source software; software evaluation; software 
ranking; multidimensional evaluation; 

I. INTRODUCTION 
Due to the characteristics of open communication, 

collaborative participation, rapid prototyping and transparency, 
Open source software has become the trend of software 
development nowadays. More and more developers are hosting 
projects in the open source communities, such as Github 1 , 
Bitbucket 2 . As of May 2018, Github has accumulated 86 
million open source projects. On the one hand, the massive 
number of open source projects provide developers with rich 
reusable resources, which are conducive to rapid iterative 
development and the creation of innovative software. On the 
other hand, due to the large number, and the uneven quality of 
these projects, it is difficult for users to choose the appropriate 
software. Therefore, it is meaningful to tell users which 
software is better, which can help them find the desired 
software and save time at the same time.  

Researchers have been interested in evaluating software 
and have generated many evaluation models, such as 
CapGemini maturity model[1], Navica maturity model[2], 
OpenBRR[3], QSOS[4], SQO-OSS[5], etc. Most of these 
models took advantage of software production, including 
source code, documentation and the data from software 
development process, which place great emphasis on software 
itself. In addition, recent studies have found that user feedback 
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has a significant impact on the effective evaluation of software 
quality, and claimed that it's meaningful and helpful to 
software and developers to take their adaptation and evolution 
decisions [6,7,8]. Some open source communities, such as 
Openhub 3 , Sourceforge 4  also focus on crowd wisdom and 
attempt to rank the software through user feedback data 
accumulated by the platform. However, these evaluation 
methods are all very simple, which only focus on software 
production or user feedback. They measure the quality of 
software from a certain dimension and do not evaluate it from a 
global perspective. Moreover, for some new excellent projects, 
there may not be enough user feedback and software process 
data accumulated, which will lead to having less chance to get 
a fair evaluation. 

In this paper, we propose a novel approach called Software 
Ranker, which ranks software based on a global perspective. 
We evaluate the software from four dimensions, each 
dimension contains some metrics, and finally integrates all the 
metrics to score the software. The main contributions of the 
study include: 

1) We define four dimensions, each dimension contains 
some metrics, and we evaluate the software separately from 
different dimensions. 

2) We proposed a new ranking approach and verified the 
effectiveness of the approach through experiments. 

3) Our method has been integrated into OSSEAN5 to form 
a software leaderboard. 

II. RELATED WORK 
The ranking of open source software is difficult due to the 

uniqueness of the software product in the development and the 
use environment. There are several established approaches to 
evaluate and rank software. Initially, researchers used 
development process data to evaluate software quality. 
Samoladas et al. constructed the SQO-OSS model to support an 
automated software evaluation system, the model mainly 
evaluates aspects of open source projects development, 
including the product (code) and the community[5]. Fagerholm 
et al. constructed a quality model suitable for use in a Free and 
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Open Source Software (FOSS) context, which includes both 
process and product quality metrics, and takes into account the 
tools and working methods commonly used in FOSS 
projects[9]. 

These traditional methods of software evaluation rely 
heavily on developers, and mostly use the data from the 
software development process to rank the software. However, 
software evaluation is a task that is performed to ensure that 
software meets its design objectives efficiently and correctly, 
and the stakeholders of software evaluation include users who 
utilize the software to reach their requirements[10]. Therefore, 
some researchers advocate that users’ acceptance and views is 
a main subject of evaluation, and focus on ranking software 
through user feedback. Fan et al.  connected open source 
software from different communities with user feedback data in 
StackOverflow6, and rank open source software through using 
information of connected posts in StackOverflow[11]. They 
verified the effectiveness of the method by comparing ranking 
result with several influential ranking results. Pagano et al. 
found that developers need to analyze the gathered feedback 
and assess potential impact, which is mostly accomplished 
manually and consequently requires high effort[12]. Thus, they 
demonstrated the importance of tool support to consolidate, 
build, analyze, and track user feedback, and summarize 
developers’ expectations towards tool support for user 
involvement. 

There are also some researchers who do not adopt any 
specific perspective to software quality, but use domain 
knowledge and demand information to evaluate the software. 
Rosqvist et al. introduced a framework for software 
measurement and evaluation based on expert judgement, which 
supports the software developer and/or assessor to arrange the 
quality control of the software development process and the 
software product[13]. Liu et al. thought the software market 
demand is of great significance to the research of software 
evaluation, they proposed a innovative approach that ranking 
software based on the market requirements[14].  

Our work is different from the methods described above. 
We aim to rank the software based on a global perspective, 
which means evaluate the software from multiple dimensions, 
such as software development process, popularity, user 
feedback, software activity, and so on.  

III. APPROACH 
Different from commercial software, open source software 

provides process data covering the entire life cycle for research 
and analysis. The rich software development process data and 
user feedback data can be obtained from the open source 
community. Thus, the evaluation of open source software is 
facilitated by the availability of the transparency of these 
software-related data. 

Our study propose a new comprehensive software ranking 
approach called Software Ranker. We evaluate software from 
four dimensions to make full use of the development process 
data and user feedback data, including community popularity, 
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development activity, software health and team health. Each 
dimension contains several metrics. First, we obtain an 
evaluation score by standardizing and averaging the several 
metrics score for each dimension. Then, we calculate the total 
score of software in four dimensions. Finally, we rank the 
software based on the evaluation result. 

 Next, we describe in detail the four dimensions and their 
corresponding metrics. And we give a specific calculation of 
the evaluation metrics for the software on Github. The Norm 
function in the formula represents a normalization operation, 
and the Avg function represents an averaging operation. 

Community Popularity: 

The open source communities can be divided into two 
groups: software production communities, such as Github, 
Sourceforge, OpenHub etc., and software consumption 
communities, such as StackOverflow, CSDN7, etc.[15]. The 
former contains structured software artifacts and development 
process data, such as source code, pull request and issues, 
while the latter contains rich user feedback text documents. 
The popularity of software is a relatively intuitive measure of 
the software quality. Some open source communities have tried 
to rank software depending on popularity, for example, the 
Sourceforge rank software based on the number of downloaded, 
and the OpenHub also gives a ranking result based on the 
number of users of the software.  

This dimension is used to measure the popularity of 
software in the above two types of communities. Specifically 
include two metrics, the popularity of the software in the 
production community (PSPC), and the popularity of the 
software in the consumer community (PSCC). For the latter 
metric, we use the number of software-related technical 
discussion posts to measure. And in the experiment of our 
study, we directly use the discussion post data in OSSEAN, 
which collected through building connection between 
production communities and consumption communities[15].  
The specific calculations for PSPC and PSCC are respectively 
expressed in Equation 1, 2. The final score for this dimension 
(CPScore) is expressed as Equation 3. The Numfork means the 
number of forks of the software. We can also use the number 
of stars of the software to measure the popularity of the project 
in reality. The NumrelatedPost means the number of related 
discussion posts of the software. 

 
Development Activity: 

Compared to some mature software, some new software do 
not accumulate enough historical development process data 
and user feedback. It is difficult to get a fair ranking result 
through traditional evaluation methods. In crowd-sourcing 
collaborative social programming communities, open source 
projects with continuous development activities should be 
promoted. For example, Github has a fork mechanism. The 
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original project with the largest number of stars may not be the 
best, because the root fork is no longer being developed. In this 
case, we prefer to use a secondary fork which still has many 
development improvements. Therefore, we argue that whether 
the project has the latest development activities is very 
important for the effective evaluation of the software. 

This evaluation dimension specifically includes two metrics: 
the number of recent code submissions (RCS), and the growth 
of recent development tasks (RDT). Note that what we count 
here is the amount of recent development activities rather than 
the total amount. In reality, we can extract development 
activities from software hosting community, for example, in 
Github, these two metric correspond to the increment of 
commits (NumrecentCommits) and the increment of pull requests 
(NumrecentPullRequest), and in this paper, we use the increment in 
the past three months. The specific calculations for RCS and 
RDT are respectively expressed as Equation 4, 5. The final 
score for this dimension (DAScore) is expressed as Equation 6. 

 
Software Health: 

Software health is the most essential factor in evaluating 
software. The software product with quality defects must not 
be placed on the market. This dimension includes three metrics: 
defect resolution rate (DSR), defect repair ratio (DRR), and 
static code quality (SCQ). The defect resolution rate metric is 
mainly used to determine whether the submitted defect can be 
quickly responded by the project manager. The faster the 
resolution rate, the healthier the project is. The defect repair 
ratio metric refers to the ratio of defects that are repaired. A 
higher repair ratio indicates that the project is healthier 
because the software is well maintained by developers. 
Equations 7, 8 give the specific calculations of the DSR and 
DRR of the software, The n in DSR indicates the number of 
issues of the software. For static code quality, there are several 
open source tools that try to analysis static code quality of a 
software by examining several aspects of it, such as PMD8 , 
Findbugs9 , SonarQube 10. In this study, we choose SonarQube 
as our source code analyzer. Because it can detect code quality 
from multiple dimensions and support multiple programming 
languages through the plug-ins form. We map the analysis 
results (5 levels) of SonarQube to a [1-50] score with intervals 
of 10, and use this score as SCQ score. The final score for this 
dimension (SHScore) is expressed as Equation 9. 

 
 

                                                
8 https://pmd.github.io/ 
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10 https://www.sonarqube.org/ 

Team Health: 

The behavior of developers is also an important factor 
affecting software quality. Many recent studies[16,17,18] have 
also examined the effects of social interaction and ownership of 
developer on software quality. As a result of the popularity of 
crowd-sourcing collaborative development models, the 
relationship between the contributors of open source software 
is increasingly complex and often changes dynamically (the 
contributor of software means the participant who submitted 
the code). We believe that the dynamic changes of contributors 
will have an impact on the software quality.  

This dimension specifically includes two metrics: 
continuous contribution rate (CCR), growth contribution rate 
(GCR). Assuming that the contributors in the last month forms 
a set Contricur, and in the current month forms a set Contricur, 
then the continuous contribution rate and the growth 
contribution rate are expressed as Equation 10, 11. The final 
score for this dimension (THScore) is expressed as Equation 12. 

 
The total evaluation score of software is shown in Equation 

13, which combine the evaluation results in four dimensions. 

 

IV. EXPERIMENT 

A. Experiment Setup 
In order to validate the effectiveness of our approach, we 

choose some categories of software, and ranking them by using 
our approach. Then, we use the metrics of the search ranking 
algorithm to compare our ranking results with some 
authoritative ranking websites. 

We use software of database management system (DBMS) 
and deep learning tools in Github to verify the effectiveness of 
our method. Here we choose the GHTorrent11 dump released 
on January 2018. About how to select a certain category of 
software, we use the search matching algorithm in OSSEAN 
which through identifying the relevance between category 
keywords and software keywords (software titles,  tags  and 
description information). 

1) DBMS: Nowadays, the DBMS has become an 
indispensable part of online platform and daily application, 
some relational and NoSQL databases are widely used, 
such as MySQL, PostgreSQL and MongoDB. The DB-
Engines12 website is a knowledge base of relational and 
NoSQL DBMS. This website provides professional 
ranking results of DBMS software which has been 
referenced by some agencies and studies[11]. In this paper, 
we regard it as a standard ranking result and compare it 
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with our ranking result. In order to maintain data 
consistency, we also take the ranking result of DBEngines 
in January. 

2) Deep Learning tools: Deep learning is beginning to 
change our work and life. It can be applied to various 
fields such as automatic driving, language translation, 
traffic prediction and so on. Many deep learning tools are 
widely used by companies and researchers to quickly 
implement algorithms. Recently, the famous data science 
website KDnuggets13 released the investigation results of 
the use of deep learning tools in 2018. In this experiment, 
we use this result as a standard ranking result to verify our 
ranking results. 

B. Evaluation Metrics 
To evaluate the ranking results, some measures of search 

ranking algorithms are commonly used, such as MAP(mean 
average precision), MRR (mean reciprocal rank) and NDCG 
(Normalized Discounted Cumulative Gain). In this paper, in 
order to get an overview of the global quality of the ranking 
result, we use NDCG to evaluate the ranking result, which 
takes into account the effects of ranking positions. Equation 15 
describes the formula to derive NDCG.  

First calculate the DCG (Discounted Cumulative Gain) as 
Equation 14 to evaluate the current ranking results, where i 
represents the index position in the ranking list, p denotes the 
length of the ranking list, and reli denotes the relevant grading 
score of the i-th result. Then normalize the evaluation score, 
the IDCG represents ideal DCG. For NDCG, the higher the 
value is, the better the ranking results. 

 

V. RESULTS AND DISCUSSIONS 
1) DBMS: We use the ranking results of DBMS from 

DBEngines as a standard ranking result and compare them 
with our ranking result. The result is shown in Table I. We can 
find that the top 10 DBMS software on DBEngines is also in 
our ranking list except InfluxDB and CouchDB. In order to 
evaluate our ranking results more intuitively, we compare our 
result with Google Trends. The result in Fig.1 shows the 
NDCG scores of our method and Google Trends. We can find 
the ranking result using our method outperformed Google 
trend, and is comparable to the standard rankings on 
DBEngines. 

2) Deep Learning tools: All ranking result of deep 
learning tools are shown in Table II. As expected, we can find 
our rank is similarity to KDnuggets. The top five software in 
our ranking results, except for PyTorch, other software 
rankings are consistent with KDnuggets, and besides Apache 
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MXnet and TFLearn, all popular deep learning tools in 
KDnuggets can be found in top 10 of our rank. Fig.2 shows 
the NDCG scores of different method of deep learning tools. 
From this comparison, we confirm that our method can 
effectively evaluate the software and give a reasonable 
ranking result. 

TABLE I.  THE RANKING RESULTS OF DBMS SOFTWARE 

DBMS 
software DB-Engines Our Rank Google 

Trends 

Redis 1 1 6 
Cassandra 2 3 7 

Elasticsearch 3 2 5 
Solr 4 6 2 

Hbase 5 5 10 
Hive 6 4 9 

Neo4j 7 7 3 
Memcached 8 10 1 
CouchDB 9 16 4 
InfluxDB 10 19 8 

 

 

Figure 1.  The NDCG score of different method of DBMS 

Through the above two experiments, we have proved the 
effectiveness of our method. Moreover, Our method has been 
encapsulated into an API , which is integrated into the 
OSSEAN platform. Because there is no comparability 
between different types of software, we rank the software 
separately according to the type of software in OSSEAN. The 
platform not only shows the overall score of the software, but 
also shows the score of the software in four dimensions and 
metrics. Compared to evaluating the software from a global 
perspective, some people may pay more attention to a certain 
dimension. For example, some people are very concerned 
about software health. In this case, you can refer to the ranking 
result of software in a certain dimension. In addition, since the 
software has been dynamically updated over time, the 
leaderboards in OSSEAN will be reanalyzed and evaluated 
monthly to maintain synchronization with the state of the 
software. 

VI. CONCLUSIONS 
This paper proposes a new approach to measure software 

from multiple dimensions. We evaluate two categories of 



software in experiment, namely DBMS and deep learning 
tools, and verify the effectiveness of our approach through 
comparing our ranking result with two professional website. In 
addition, our approach has been applied to practice and 
provide services normally. For the massive amounts of open 
source software, we believe that our approach can provide 
users with some additional information and help them select 
the appropriate software. 

TABLE II.  THE RANKING RESULTS OF DEEP LEARNING TOOLS 

Deep 
Learning tools KDnuggets Our Rank Google 

Trends 
Tensorflow 1 1 3 

Keras 2 2 2 
PyTorch 3 6 7 
Theano 4 4 5 

DeepLearning4J 5 5 10 
CNTK 6 3 6 

Apache MXnet 7 15 11 
Caffe 8 9 1 

Caffe2 9 8 8 
TFLearn 10 19 9 

Torch 11 7 4 
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Figure 2.  The NDCG score of different method of deep learning tools 
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