
Software Ranker: A New Comprehensive
Software Ranking Approach

Yarong Zeng, Yue Yu, Xunhui Zhang, Yaozong Li, Tao Wang, Gang Yin, Huaimin Wang
National Laboratory for Parallel and Distributed Processing

 National University of Defence Technology
Changsha, China

{zengyarong16, yuyue, zhangxunhui, liyaozong17, taowang2005, yingang, hmwang}@nudt.edu.cn

Abstract—With the popularity of the open source, the open
source community has accumulated a large number of open
source project. While these massive projects provide developers
with rich reusable resource, they also bring difficulties for users
to choose the appropriate software. Therefore, it is very
meaningful to rank the software and tell users which is better. In
this paper, we propose a novel approach that ranks software
based on a global perspective different from traditional software
evaluation and ranking methods . We evaluate the software from
four dimensions, namely community popularity, development
activity, software health and team health. Each dimension
contains some metrics. We demonstrate the effectiveness of our
method through comparative experiments. This method has been
integrated into to the OSSEAN platform to form a software
leaderboard.

Keywords-open source software; software evaluation; software
ranking; multidimensional evaluation;

I. INTRODUCTION
Due to the characteristics of open communication,

collaborative participation, rapid prototyping and transparency,
Open source software has become the trend of software
development nowadays. More and more developers are hosting
projects in the open source communities, such as Github 1 ,
Bitbucket 2 . As of May 2018, Github has accumulated 86
million open source projects. On the one hand, the massive
number of open source projects provide developers with rich
reusable resources, which are conducive to rapid iterative
development and the creation of innovative software. On the
other hand, due to the large number, and the uneven quality of
these projects, it is difficult for users to choose the appropriate
software. Therefore, it is meaningful to tell users which
software is better, which can help them find the desired
software and save time at the same time.

Researchers have been interested in evaluating software
and have generated many evaluation models, such as
CapGemini maturity model[1], Navica maturity model[2],
OpenBRR[3], QSOS[4], SQO-OSS[5], etc. Most of these
models took advantage of software production, including
source code, documentation and the data from software
development process, which place great emphasis on software
itself. In addition, recent studies have found that user feedback

1 https://github.com/
2 https://bitbucket.org/

has a significant impact on the effective evaluation of software
quality, and claimed that it's meaningful and helpful to
software and developers to take their adaptation and evolution
decisions [6,7,8]. Some open source communities, such as
Openhub 3 , Sourceforge 4 also focus on crowd wisdom and
attempt to rank the software through user feedback data
accumulated by the platform. However, these evaluation
methods are all very simple, which only focus on software
production or user feedback. They measure the quality of
software from a certain dimension and do not evaluate it from a
global perspective. Moreover, for some new excellent projects,
there may not be enough user feedback and software process
data accumulated, which will lead to having less chance to get
a fair evaluation.

In this paper, we propose a novel approach called Software
Ranker, which ranks software based on a global perspective.
We evaluate the software from four dimensions, each
dimension contains some metrics, and finally integrates all the
metrics to score the software. The main contributions of the
study include:

1) We define four dimensions, each dimension contains
some metrics, and we evaluate the software separately from
different dimensions.

2) We proposed a new ranking approach and verified the
effectiveness of the approach through experiments.

3) Our method has been integrated into OSSEAN5 to form
a software leaderboard.

II. RELATED WORK
The ranking of open source software is difficult due to the

uniqueness of the software product in the development and the
use environment. There are several established approaches to
evaluate and rank software. Initially, researchers used
development process data to evaluate software quality.
Samoladas et al. constructed the SQO-OSS model to support an
automated software evaluation system, the model mainly
evaluates aspects of open source projects development,
including the product (code) and the community[5]. Fagerholm
et al. constructed a quality model suitable for use in a Free and

3 https://www.openhub.net/
4 https://sourceforge.net/
5 http://ossean.trustie.net/

Open Source Software (FOSS) context, which includes both
process and product quality metrics, and takes into account the
tools and working methods commonly used in FOSS
projects[9].

These traditional methods of software evaluation rely
heavily on developers, and mostly use the data from the
software development process to rank the software. However,
software evaluation is a task that is performed to ensure that
software meets its design objectives efficiently and correctly,
and the stakeholders of software evaluation include users who
utilize the software to reach their requirements[10]. Therefore,
some researchers advocate that users’ acceptance and views is
a main subject of evaluation, and focus on ranking software
through user feedback. Fan et al. connected open source
software from different communities with user feedback data in
StackOverflow6, and rank open source software through using
information of connected posts in StackOverflow[11]. They
verified the effectiveness of the method by comparing ranking
result with several influential ranking results. Pagano et al.
found that developers need to analyze the gathered feedback
and assess potential impact, which is mostly accomplished
manually and consequently requires high effort[12]. Thus, they
demonstrated the importance of tool support to consolidate,
build, analyze, and track user feedback, and summarize
developers’ expectations towards tool support for user
involvement.

There are also some researchers who do not adopt any
specific perspective to software quality, but use domain
knowledge and demand information to evaluate the software.
Rosqvist et al. introduced a framework for software
measurement and evaluation based on expert judgement, which
supports the software developer and/or assessor to arrange the
quality control of the software development process and the
software product[13]. Liu et al. thought the software market
demand is of great significance to the research of software
evaluation, they proposed a innovative approach that ranking
software based on the market requirements[14].

Our work is different from the methods described above.
We aim to rank the software based on a global perspective,
which means evaluate the software from multiple dimensions,
such as software development process, popularity, user
feedback, software activity, and so on.

III. APPROACH
Different from commercial software, open source software

provides process data covering the entire life cycle for research
and analysis. The rich software development process data and
user feedback data can be obtained from the open source
community. Thus, the evaluation of open source software is
facilitated by the availability of the transparency of these
software-related data.

Our study propose a new comprehensive software ranking
approach called Software Ranker. We evaluate software from
four dimensions to make full use of the development process
data and user feedback data, including community popularity,

6 https://stackoverflow.com/

development activity, software health and team health. Each
dimension contains several metrics. First, we obtain an
evaluation score by standardizing and averaging the several
metrics score for each dimension. Then, we calculate the total
score of software in four dimensions. Finally, we rank the
software based on the evaluation result.

 Next, we describe in detail the four dimensions and their
corresponding metrics. And we give a specific calculation of
the evaluation metrics for the software on Github. The Norm
function in the formula represents a normalization operation,
and the Avg function represents an averaging operation.

Community Popularity:

The open source communities can be divided into two
groups: software production communities, such as Github,
Sourceforge, OpenHub etc., and software consumption
communities, such as StackOverflow, CSDN7, etc.[15]. The
former contains structured software artifacts and development
process data, such as source code, pull request and issues,
while the latter contains rich user feedback text documents.
The popularity of software is a relatively intuitive measure of
the software quality. Some open source communities have tried
to rank software depending on popularity, for example, the
Sourceforge rank software based on the number of downloaded,
and the OpenHub also gives a ranking result based on the
number of users of the software.

This dimension is used to measure the popularity of
software in the above two types of communities. Specifically
include two metrics, the popularity of the software in the
production community (PSPC), and the popularity of the
software in the consumer community (PSCC). For the latter
metric, we use the number of software-related technical
discussion posts to measure. And in the experiment of our
study, we directly use the discussion post data in OSSEAN,
which collected through building connection between
production communities and consumption communities[15].
The specific calculations for PSPC and PSCC are respectively
expressed in Equation 1, 2. The final score for this dimension
(CPScore) is expressed as Equation 3. The Numfork means the
number of forks of the software. We can also use the number
of stars of the software to measure the popularity of the project
in reality. The NumrelatedPost means the number of related
discussion posts of the software.

Development Activity:

Compared to some mature software, some new software do
not accumulate enough historical development process data
and user feedback. It is difficult to get a fair ranking result
through traditional evaluation methods. In crowd-sourcing
collaborative social programming communities, open source
projects with continuous development activities should be
promoted. For example, Github has a fork mechanism. The

7 https://www.csdn.net/

original project with the largest number of stars may not be the
best, because the root fork is no longer being developed. In this
case, we prefer to use a secondary fork which still has many
development improvements. Therefore, we argue that whether
the project has the latest development activities is very
important for the effective evaluation of the software.

This evaluation dimension specifically includes two metrics:
the number of recent code submissions (RCS), and the growth
of recent development tasks (RDT). Note that what we count
here is the amount of recent development activities rather than
the total amount. In reality, we can extract development
activities from software hosting community, for example, in
Github, these two metric correspond to the increment of
commits (NumrecentCommits) and the increment of pull requests
(NumrecentPullRequest), and in this paper, we use the increment in
the past three months. The specific calculations for RCS and
RDT are respectively expressed as Equation 4, 5. The final
score for this dimension (DAScore) is expressed as Equation 6.

Software Health:

Software health is the most essential factor in evaluating
software. The software product with quality defects must not
be placed on the market. This dimension includes three metrics:
defect resolution rate (DSR), defect repair ratio (DRR), and
static code quality (SCQ). The defect resolution rate metric is
mainly used to determine whether the submitted defect can be
quickly responded by the project manager. The faster the
resolution rate, the healthier the project is. The defect repair
ratio metric refers to the ratio of defects that are repaired. A
higher repair ratio indicates that the project is healthier
because the software is well maintained by developers.
Equations 7, 8 give the specific calculations of the DSR and
DRR of the software, The n in DSR indicates the number of
issues of the software. For static code quality, there are several
open source tools that try to analysis static code quality of a
software by examining several aspects of it, such as PMD8 ,
Findbugs9 , SonarQube 10. In this study, we choose SonarQube
as our source code analyzer. Because it can detect code quality
from multiple dimensions and support multiple programming
languages through the plug-ins form. We map the analysis
results (5 levels) of SonarQube to a [1-50] score with intervals
of 10, and use this score as SCQ score. The final score for this
dimension (SHScore) is expressed as Equation 9.

8 https://pmd.github.io/
9 http://findbugs.sourceforge.net/
10 https://www.sonarqube.org/

Team Health:

The behavior of developers is also an important factor
affecting software quality. Many recent studies[16,17,18] have
also examined the effects of social interaction and ownership of
developer on software quality. As a result of the popularity of
crowd-sourcing collaborative development models, the
relationship between the contributors of open source software
is increasingly complex and often changes dynamically (the
contributor of software means the participant who submitted
the code). We believe that the dynamic changes of contributors
will have an impact on the software quality.

This dimension specifically includes two metrics:
continuous contribution rate (CCR), growth contribution rate
(GCR). Assuming that the contributors in the last month forms
a set Contricur, and in the current month forms a set Contricur,
then the continuous contribution rate and the growth
contribution rate are expressed as Equation 10, 11. The final
score for this dimension (THScore) is expressed as Equation 12.

The total evaluation score of software is shown in Equation

13, which combine the evaluation results in four dimensions.

IV. EXPERIMENT

A. Experiment Setup
In order to validate the effectiveness of our approach, we

choose some categories of software, and ranking them by using
our approach. Then, we use the metrics of the search ranking
algorithm to compare our ranking results with some
authoritative ranking websites.

We use software of database management system (DBMS)
and deep learning tools in Github to verify the effectiveness of
our method. Here we choose the GHTorrent11 dump released
on January 2018. About how to select a certain category of
software, we use the search matching algorithm in OSSEAN
which through identifying the relevance between category
keywords and software keywords (software titles, tags and
description information).

1) DBMS: Nowadays, the DBMS has become an
indispensable part of online platform and daily application,
some relational and NoSQL databases are widely used,
such as MySQL, PostgreSQL and MongoDB. The DB-
Engines12 website is a knowledge base of relational and
NoSQL DBMS. This website provides professional
ranking results of DBMS software which has been
referenced by some agencies and studies[11]. In this paper,
we regard it as a standard ranking result and compare it

11 http://ghtorrent.org/downloads.html 
12 https://db-engines.com/en/

with our ranking result. In order to maintain data
consistency, we also take the ranking result of DBEngines
in January.

2) Deep Learning tools: Deep learning is beginning to
change our work and life. It can be applied to various
fields such as automatic driving, language translation,
traffic prediction and so on. Many deep learning tools are
widely used by companies and researchers to quickly
implement algorithms. Recently, the famous data science
website KDnuggets13 released the investigation results of
the use of deep learning tools in 2018. In this experiment,
we use this result as a standard ranking result to verify our
ranking results.

B. Evaluation Metrics
To evaluate the ranking results, some measures of search

ranking algorithms are commonly used, such as MAP(mean
average precision), MRR (mean reciprocal rank) and NDCG
(Normalized Discounted Cumulative Gain). In this paper, in
order to get an overview of the global quality of the ranking
result, we use NDCG to evaluate the ranking result, which
takes into account the effects of ranking positions. Equation 15
describes the formula to derive NDCG.

First calculate the DCG (Discounted Cumulative Gain) as
Equation 14 to evaluate the current ranking results, where i
represents the index position in the ranking list, p denotes the
length of the ranking list, and reli denotes the relevant grading
score of the i-th result. Then normalize the evaluation score,
the IDCG represents ideal DCG. For NDCG, the higher the
value is, the better the ranking results.

V. RESULTS AND DISCUSSIONS
1) DBMS: We use the ranking results of DBMS from

DBEngines as a standard ranking result and compare them
with our ranking result. The result is shown in Table I. We can
find that the top 10 DBMS software on DBEngines is also in
our ranking list except InfluxDB and CouchDB. In order to
evaluate our ranking results more intuitively, we compare our
result with Google Trends. The result in Fig.1 shows the
NDCG scores of our method and Google Trends. We can find
the ranking result using our method outperformed Google
trend, and is comparable to the standard rankings on
DBEngines.

2) Deep Learning tools: All ranking result of deep
learning tools are shown in Table II. As expected, we can find
our rank is similarity to KDnuggets. The top five software in
our ranking results, except for PyTorch, other software
rankings are consistent with KDnuggets, and besides Apache

13 https://www.kdnuggets.com/2018/05/new-poll-software-analytics-
data-mining-data-science-machine-learning.html

MXnet and TFLearn, all popular deep learning tools in
KDnuggets can be found in top 10 of our rank. Fig.2 shows
the NDCG scores of different method of deep learning tools.
From this comparison, we confirm that our method can
effectively evaluate the software and give a reasonable
ranking result.

TABLE I. THE RANKING RESULTS OF DBMS SOFTWARE

DBMS
software DB-Engines Our Rank Google

Trends

Redis 1 1 6
Cassandra 2 3 7

Elasticsearch 3 2 5
Solr 4 6 2

Hbase 5 5 10
Hive 6 4 9

Neo4j 7 7 3
Memcached 8 10 1
CouchDB 9 16 4
InfluxDB 10 19 8

Figure 1. The NDCG score of different method of DBMS

Through the above two experiments, we have proved the
effectiveness of our method. Moreover, Our method has been
encapsulated into an API , which is integrated into the
OSSEAN platform. Because there is no comparability
between different types of software, we rank the software
separately according to the type of software in OSSEAN. The
platform not only shows the overall score of the software, but
also shows the score of the software in four dimensions and
metrics. Compared to evaluating the software from a global
perspective, some people may pay more attention to a certain
dimension. For example, some people are very concerned
about software health. In this case, you can refer to the ranking
result of software in a certain dimension. In addition, since the
software has been dynamically updated over time, the
leaderboards in OSSEAN will be reanalyzed and evaluated
monthly to maintain synchronization with the state of the
software.

VI. CONCLUSIONS
This paper proposes a new approach to measure software

from multiple dimensions. We evaluate two categories of

software in experiment, namely DBMS and deep learning
tools, and verify the effectiveness of our approach through
comparing our ranking result with two professional website. In
addition, our approach has been applied to practice and
provide services normally. For the massive amounts of open
source software, we believe that our approach can provide
users with some additional information and help them select
the appropriate software.

TABLE II. THE RANKING RESULTS OF DEEP LEARNING TOOLS

Deep
Learning tools KDnuggets Our Rank Google

Trends
Tensorflow 1 1 3

Keras 2 2 2
PyTorch 3 6 7
Theano 4 4 5

DeepLearning4J 5 5 10
CNTK 6 3 6

Apache MXnet 7 15 11
Caffe 8 9 1

Caffe2 9 8 8
TFLearn 10 19 9

Torch 11 7 4

� ��
	��

������

�

���

���

���

���

�

���

��������� ����������
������������

�
�
�

��
��
�

Figure 2. The NDCG score of different method of deep learning tools

ACKNOWLEDGMENT
The research is supported by the National Natural Science

Foundation of China (Grant No.61432020) and National Grand
R&D Plan (Grant No. 2016-YFB1000805).

REFERENCES
[1] Duijnhouwer F. W., Widdows C. Open Source Maturity Model[EB/OL],

http://www.seriouslyopen.org, 2015-07-10.  
[2] Bernard Golden. Succeeding with Open Source [M], Addison-Wesley

Information Technology Series, 2005.  
[3] OpenBrr, Business Readiness Rating for Open Source [EB/OL],

http://www.openbrr.org, 2015-07-10.  
[4] Origin, Atos. "Method for Qualification and Selection of Open Source

software (QSOS), version 1.6." Disponible en Internet: http://www. qsos.
org/download/qsos-1.6-en. pdf (2006). 

[5] Samoladas, Ioannis, et al. "The SQO-OSS quality model: measurement
based open source software evaluation." IFIP International Conference
on Open Source Systems. Springer, Boston, MA, 2008.

[6] Atoum, Issa, and Chih How Bong. "A framework to predict software
“quality in use” from software reviews." Proceedings of the First
International Conference on Advanced Data and Information
Engineering (DaEng-2013). Springer, Singapore, 2014.

[7] Pagano, Dennis, and Bernd Brügge. "User involvement in software
evolution practice: a case study." Software Engineering (ICSE), 2013
35th International Conference on. IEEE, 2013.

[8] Ali, Raian, et al. "Social adaptation: when software gives users a voice."
(2012).

[9] Fagerholm, Fabian. "Measuring and tracking quality factors in Free and
Open Source Software projects." (2007).

[10] Sherief, Nada. "Software evaluation via users' feedback at
runtime." Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. ACM, 2014.

[11] Fan, Qiang, et al. "Ranking open source software based on crowd
wisdom." Software Engineering and Service Science (ICSESS), 2015
6th IEEE International Conference on. IEEE, 2015.

[12] Pagano, Dennis, and Bernd Brügge. "User involvement in software
evolution practice: a case study." Software Engineering (ICSE), 2013
35th International Conference on. IEEE, 2013.

[13] Rosqvist, Tony, Mika Koskela, and Hannu Harju. "Software quality
evaluation based on expert judgement." Software Quality Journal 11.1
(2003): 39-55.

[14] Liu, Bingxun, et al. "Software Ranking and Analysis based on Mining
Market Requirements and Characteristics." Proceedings of the 7th Asia-
Pacific Symposium on Internetware. ACM, 2015.

[15] Yin, Gang, et al. "OSSEAN: Mining crowd wisdom in open source
communities." Service-Oriented System Engineering (SOSE), 2015
IEEE Symposium on. IEEE, 2015.

[16] Bettenburg, Nicolas, and Ahmed E. Hassan. "Studying the impact of
social interactions on software quality." Empirical Software
Engineering 18.2 (2013): 375-431.

[17] Bird, Christian, et al. "Don't touch my code!: examining the effects of
ownership on software quality." Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011.

[18] Nagappan, Nachiappan, Brendan Murphy, and Victor Basili. "The
influence of organizational structure on software quality." Software
Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference
on. IEEE, 2008.

