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Abstract. The simplified and deformalized contribution mechanisms in
social coding are attracting more and more contributors involved in the
collaborative software development. To reduce the burden on the side of
project core team, various kinds of automated and intelligent approaches
have been proposed based on machine learning and data mining tech-
nologies, which would be restricted by the lack of training data. In this
paper, we conduct an extensive empirical study of transferring and ag-
gregating reusable models across projects in the context of issue classifi-
cation, based on a large-scale dataset including 799 open source projects
and more than 795,000 issues. We propose a novel cross-project approach
which integrate multiple models learned from various source projects
to classify target project. We evaluate our approach through conduct-
ing comparative experiments with the within-project classification and
a typical cross-project method called Bellwether. The results show that
our cross-project approach based on ensemble modeling can obtain great
performance, which comparable to the within-project classification and
performs better than Bellwether.

Keywords: Cross-project, Issue Classification, Transfer Learning, En-
semble Modeling;

1 INTRODUCTION

With the popularity of open source, more and more individual developers, re-
search institutes or industrial companies prefer to host their software projects
on social coding platforms, e.g., BitBucket 1 and GitHub 2, to organize and
manage the whole development life-cycle, which can catch more attentions from
a large number of external developers and users. In order to simplify the col-
laborative process for both experienced and inexperienced contributors, a set of
1 https://bitbucket.org
2 https://github.com
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lightweight tools are widely adopted, e.g., pull request for code-patch submis-
sion [6] and Issue Tracking System (ITS) for development task management [4].
For example, by using the ITS on GitHub 3, a contributor only requires a short
textual abstract containing a title and an optional description, when s/he wants
to report a new found bug, ask an usage question or request an original fea-
ture to a software project [5]. On the one hand, those deformalized contribution
mechanisms can make a collaborative project easy to collect more contributions
from a wider range of the community. On the other hand, the increasing number
of arbitrary, half-baked or undesirable contributions flow into the project along
with high-quality ones, which poses a serious challenge for the core team in
further maintenance, e.g., project integrators are overburdened with evaluating
excessive pull requests in time [28, 27].

To reduce the burden on the side of project core team, various kinds of
automated and intelligent approaches have been proposed based on machine
learning and data mining, such as prioritisation tools for recommending the
high-priority bug reports [25] and pull requests [26]. In theory, the performances
of the training-based approaches are highly correlated with the scale of train-
ing data [2, 17]. However, within a specific project, a comprehensive historical
dataset which can cover the whole development life-cycle is often not available
in practice. In this case, building a good training model is a challenging issue
as collecting new data and labeling them is cost-expensive. Inspired by the the-
ory and technique of transfer learning [20], cross-project approaches have been
introduced and brought into focus to solve this problem. However, the existing
cross-project work in software engineering, as discussed in Section 2.2, faces the
challenges in terms of complicated training process and high computational cost.
In this paper, we conduct an extensive empirical study of transferring and in-
tegrating reusable models across projects in the context of issue classification.
We propose a novel approach to classify new issues in target projects by inte-
grating multiple models learned from various source projects. And we evaluate
our approach on a collection of 799 projects and more than 795,000 issue re-
ports in GitHub. To the best of our knowledge, this is a first study of exploring
cross-project approaches that categorizes issue reports, and also evaluating the
cross-project learning topic in software engineering on such a large-scale dataset.

The rest of the paper is organized as follows. In Section 2, we discuss the
backgroud and related work of issue classification and transfer learning applied in
cross-project defect predction. In Section 3, we present the approach employed to
address cross-project issue classification. In Section 4, we show the dataset used
to evaluate our approach. Experiments and results are described in Section 5
and Section 6. In the end, we draw our conclusions in Section 7.

3 https://github.com/blog/831-issues-2-0-the-next-generation
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2 BACKGROUND AND RELATED WORK

2.1 Issue Reports Classification

In project development process, both developers and end-users can submit issue
reports to ITS when performance does not meet their expectations [5]. According
to our statistics to investigate the issue’s first response time from core team, for
nearly 800 open source projects (see Section 4.1) in GitHub. We found that it
takes a long time period for core team members to start addressing issues (the
average of median response time is 5.2 days, while the average of mean response
time is 44 days). Therefore, to reduce the issue analysis time and improve the
overall management process, an automated mechanism to classify issue reports
is urgently needed.

Categorization of issue reports using techniques from text mining and ma-
chine learning has been receiving increasing attention from the research com-
munity. Antoniol et al. [1] used three machine learning methods to distinguish
bugs from other kinds of issues. They found the information contained in is-
sues posted in ITS can be indeed used to classify such issues, distinguish bugs
from other activities, with a correct decision rate as high as 82% (experiment
on 3 case projects). There are also some ways to increase the information ex-
tracted from ITS to improve the performance of the model. Merten et al. [16]
found meta-data from ITS can improve classifier performance through conduct-
ing empirical research on 4 open-source projects. Fan et al. [5] concluded that
semantic perplexity of issue reports is a crucial factor that affects the classifica-
tion performance. They experimented on 80 projects in GitHub and verified that
model which considered semantic complexity do improve the issue classification
performance.

Above classify methods rely on the data set within the project to train the
classification model. However, Peters et al. [21] found within-projects predictors
are weak for small data-sets. And Kitchenham et al. [9] discovered the problems
with relying on within-project data-sets. They point out that the time required
to collect enough project data can be prohibitive. In these situations, we pro-
pose a cross-project approach to address issues categorization problem of small
dataset projects. In addition, those related works are based on a set of stan-
dard projects, there is no way to prove whether they are suitable for large-scale
projects in actual. In this paper, we conduct a large-scale experiment to verify
the effectiveness of our cross-project approach on issue classification.

2.2 Cross-project prediction

In practice, for new projects or projects with limited training data, It’s a time-
consuming and effort-intensive task to collect new data and label them. A possi-
ble way to solve this problem is using data collected from other projects, called
cross-project prediction. Cross-project prediction has been receiving significant
attention, and many studies have been proposed in research community.
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Initial attempts for cross-project prediction always resulted in pessimistic
performance. Zimmermann et al. [33] ran 622 cross-project predictions and found
that only 3.4% actually worked. Menzies et al. [15] concluded that the local model
were superior to the global model with experiment on four big datasets. Other
researchers offer similar disappointing results [22, 3, 23]. The main reason that
leads to the poor performance of cross-project prediction is the data distribution
differences between the source and target project [18]. To reduce this difference,
many optimized cross-project methods have been proposed. Zhang et al. [30]
proposed context-aware rank transformations for predictors, built a universal
model on the transformed data of 1398 projects, and found this model obtains
prediction performance comparable to the within-project models. Then they
proposed connectivity-based unsupervised classifier (via spectral clustering) and
evaluated the feasibility for cross-project prediction by experimenting on three
publicly available datasets [31].

Transfer learning techniques are often adopted for cross-project prediction to
transfer lessons learned from source project S to the target project T in software
engineering community. The specific application methods under cross-project
scenarios can be divided into two types: data-level and feature-level transform.
The data-level approaches directly transfer some subsets of data from source
projects to the target project. Turhan et al. [24] collected similar source instances
for target instances to train a prediction model using the nearest neighbour
filter (NN filter) method. Ma et al. proposed Transfer Naive Bayes (TNB) [14]
to predict target project. The data-level approaches use data in raw form, but
they suffer from instability issues [12]. This prompted research on feature-level
approaches. These approaches use projection to place the source and target data
in a common latent feature space. Nam et al. [18] adapted the state-of-the-art
transfer learning technique called Transfer Component Analysis (TCA) [19] and
proposed TCA+ by adding decision rules to select proper normalization options.

To reduce the complexity of cross-project prediction, Krishna et al. [12] pro-
posed a simple but effective cross-project approach. They chose the prior project
which offered most accuracy predictions that generalize across other projects as
“bellwether”, then used the “bellwether” to generate quality predictors on new
project data. This research is very instructive for our work. It proved that di-
rectly transferring model learned from the source project to predict the target
project is feasible. However we think that the cross-project approach will be
more effective [13] when taking the integration of models into consideration. In
this work, we propose a new cross-project approach by taking into account the
cost of computation and the reusability of cross project resources.

3 APPROACH

Cross-project prediction may suffer from two limitations. First, conclusion in-
stability proposed by Krishna [12], that is when learning from all available data,
prediction model may undergo constant changes whenever new data arrives.
Second, the learner is opaque and the cost of calculation is expensive. When
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encountering new test data, the model needs to be retrained. To ease these
two restrictions, we propose a new cross project prediction approach based on
Ensemble Modeling, which consider the cross-project problem from the per-
spective of integration with reference to Ensenmble Learning. The key idea of
our approach is using multiple models of source projects to make a classifica-
tion decision for the target project. The source project is a project which have
sufficient training samples to train a local model. And the target project is a
project with limited training data. Comparing with the existing cross-project
approaches, doing transfer at model level in our approach can greatly reduce the
computational cost, because it can directly reuse the existing trained models. In
addition, compared to Bellwether mentioned in Section 2, which transfer only
one model to predict target predict, our approach can achieve better general-
ization performance than it by combining multiple models. We apply following
two operators to classify the new target project PT . The source project set is
denoted as C.

1. CLASSIFY:
– Randomly choose K models of source projects.
– Integrate these K models to predict the target project PT using the

majority voting rule.
2. MONITOR:

– For source projects, update classification model on time to add the newly
arrived training data.

– For target projects, if enough training data have been accumulated over
time, the local model will be used for classification.

For the selection of K value, we test its impact on cross-project classification in
Section 5, we will elaborate how to choose K value in Section 6.

Pay attention to the simplicity of this approach, each model of project in C
can be trained in advance. For a new target project, we only need to randomly
select models and integrate voting. We can directly reuse the knowledge of other
projects to reduce the cost of calculation. And the MONITOR operator can
relieve conclusion instability.

4 DATASET

4.1 Data Collection

We compose a sample of GitHub projects that each project contains a sufficient
number of labeled issues. Using the 05/2017 GHTorrent 4 dump, we get projects
that have at least 100 issues in total, including 12,797 projects and 6,414,872
issues. Then, we remove the non-existent projects online and collect issues data
for each project through GitHub public API in consideration of data missed
in Ghtorrent. The ITS in GitHub uses a labeling system to help organize and
prioritize issues. To get a pre-labeled training set, we need to extract category
4 http://ghtorrent.org/downloads.html
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information from the user-defined label system. In this work, we use category
extraction method[5] based on the big issue datasets to extract bug-prone la-
bels, such as “[Type] Bug”, “Defect”, and non-bug-prone label, such as “type:
enhancement”, “feature request”. Through this process, we extract 4,222 labels
and about 2,436,308 issues have these labels. Via the statistics of these labels,
we found that some labels appeared in only one project. Considering the uni-
versality of the labels, we choose the first 40 labels which cover most of the
issues(90.88%) and manually determine the issue type “bug” or “non-bug” ac-
cording to the tendencies of the issue labels. Finally, we get 10,564 projects and
2,214,117 labeled issues.

4.2 Filtering

Repositorys hosted on GitHub have a variety of uses[8], some projects that use
GitHub for issue tracking but not for code hosting or reversely. In order to avoid
analyzing non-software projects and ensure the effect of classification model, we
filter the dataset using the following rules:

– Project must not be forks of existing GitHub projects.
– Project must not be a pure documentation project. This criterion guar-

antees project have enough contextual information exploring cross project
relevance.

– The issue text of project must be in English. This criterion avoids language
deviation when classified the issue of other projects.

– Project must have at least 500 labeled issues. This criterion guarantees that
the classification models have enough training and testing data.

After the above filterings, the obtained dataset contains 779 projects, and
795,284 issues. The smallest project has 502 issues and the largest project has
13,793 issues in total. The mean number of issues per project is 1020 and the
median is 672.

4.3 Preprocessing

Each issue, which have be labeled as “bug” or “non-bug”, has two main tex-
tual information sources – title and description. We concat the two parts of
information together as issue text data. In order to train an automatic classi-
fier, we create a feature vector for each text information through the following
preprocessing steps. The first step is data preprocessing, a series of operations
(lowercasing, tokenizing, stop-word removing, and stemming) is used to remove
noise data and standardize text vocabulary. The issue text is segmented into dif-
ferent terms through this step. The second step is text quantizing. Using TF-IDF
to calculate term weight, and then each issue can be represented as a weighted
vector. For each project, a collection of raw issues text data can be converted
to a matrix of TF-IDF vectors, which can be used as training data to get a
classification model.
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5 EXPERIMENT

5.1 Model Training

In this paper, we address the issue classification problem using binary classifica-
tion. For each issue of the target project, we aim to determine the issue type as
“bug” or “non-bug”. We train a classification model based on the past data that
takes the temporal information of issues into account. The temporal information
reflects how such classification models can be used in practice. We split the issue
data into two clusters at October 1th, 2016 (According to statistics, this division
can get more training and testing projects.). All issues before that time point are
for training and issues after that time point are for testing. This divides 673,490
issues into training set and 121,794 issues into testing set.

We use the state-of-the-art two-stage classifier [5] to deal with issue classifi-
cation problem. The first-stage uses SVM to predict the probability of bug-prone
and extracts perplex information of sentences from free issue text. The second-
stage combines the output of the first-stage and the developer information as
training input, then uses logistic regression to predict issue type. In order to
make supervised text-based classification performs the best and avoid the in-
fluence of unbalanced dataset, we train the classification model using projects
with more than 500 labeled issues and the bug rate of which are between 20%
and 80%. When validating the performance of the model, we use the projects
with more than 50 issues as test projects so as to ensure the authenticity of the
classification results.

5.2 Experimental Methodology

To verify our approach, we compare our cross-project approach against Within-
project and Bellwethers approach.

Within-project:

– Using local labeled data of the project to train a classification model.
– Using the model to classify new issue data of project.

Bellwether:

– Traversing cross-project pairs that are independent of the target project and
choose the most prior project which offers the highest accuracy value of
prediction as “bellwether”.

– Using the “bellwether”, generate classifier on new issue data of target project.

We use the favg (See Equation 1) to evaluate classification performance of
the above methods. Statistical analysis is used to verify our conclusions about
the difference between the three methods. For the comparison between mul-
tiple groups, we use multiple contrast test procedure T̃ [10] in this study. We
implement the procedure T̃ by nparcomp5 package in R to evaluate the classifica-
tion performance of all the approaches by using our dataset. We set the contrast
5 https://cran.r-project.org/web/packages/nparcomp/index.html
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type to Tukey (all-pairs) to compare all groups pairwise. For each pair of groups,
the 95% confidence interval is analyzed to test whether the corresponding null
hypothesis can be rejected. The null hypothesis of T̃ test is that there is no
difference between classification result of the two approaches. If p.V alue < 0.05,
it means that the null hypothesis is significantly rejected at 5% level of signif-
icance. The Estimator denotes the relative effect between two sets of data. If
the lower boundary of the interval is greater than 0.5 for groups A and B, it’s
means that B tends to be larger than A. Similarly, if the upper boundary of the
interval is less than 0.5 for groups A and B, it’s means that A tends to be larger
than B. Finally, if the lower boundary of the interval is less than 0.5 and the
upper boundary is greater than 0.5, it’s means that the data does not provide
enough evidence to reject the null hypothesis [11].

5.3 Experimental Design

According to the model training methods mentioned in the 5.1, we get a projects
set S (|S| = 465) which have sufficient issues data (at least 500 issues which
before October 1th, 2016) to train a good classification model within the project,
and a projects set T (|T | = 500) which have a certain amount of data (at least
50 issues which after October 1th, 2016) to verify the performance of the cross
classifier. We conduct experiments with the setting below.

We extract 50 projects from the project set S as test projects Testprj , which
have enough issue data to train a local model, and a certain amount of test
issue data to verify the performance (make sure can compare with the Within-
project method). For the rest of S and the project set T, we construct a set
of cross-project pairs as training samples which used to choose prior project
“bellwether” in Bellwethers approach. The cross-project pair is defined as, for
project A ∈ S and project B ∈ T , we consider a cross-project pair (A, B) to
train a model from A to predict B if and only if A ̸= B. Next, Referring to the
steps mentioned in Section 3, 5.2, we use the three approaches (our method,
Bellwether, Within-project) to classify issue data for each project in Testprj . We
repeated the above process 10 times to enhance the robustness of the experiment
and make the conclusions more convincing. Moreover, In order to verify the effect
of K value on classification performance, we test the classification performance
of our approach with different K values in experiment, within 100 intervals, the
step is 1.

5.4 Evaluation Metrics

Using Precision, Recall, F-measure metrics as evaluation criteria is a common
procedure in related work [14, 18, 33, 7, 29]. Precision is used to measure the ex-
actness of the prediction set, while Recall evaluates the completeness. F-measure
represents the harmonic mean of Precision and Recall. In [32, 5], in order to give
an overall performance evaluation, the average F-measure is used to evaluate the
classification model. This metric uses the weighted average value of F-measure
for both categories by the proportions of instances in that category [32].
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In this paper, considering the performance of both categories (bug or non-
bug), we use average F-measure to assess the accuracy of the classification.
Equation (1) describes the formula to derive the average F-measure. The av-
erage F-measure is denoted as favg , F-measure of bug (nonbug) as fbug (fnonbug
), and number of bug (nonbug) as nbug (nnonbug).

favg =
nbug ∗ fbug + nnonbug ∗ fnonbug

nbug + nnonbug
(1)

6 RESULTS

Figure 1 provides a summary of the comparison steps. It shows the median
values of f_avg with three approach based on 500 projects. The horizontal axis
is the K value, which is mainly used to show the classification performance
of our approach with different K values in the experiment. The Within-project
and the Bellwether method are not affected by the K value. From the figure,
we can find our approach obtains classification performance comparable to the
Within-project method when K is large enough. And our approach out-performs
Bellwether when integrating a few models. The preliminary result provide a
evidence that the idea of model integration would achieve ideal performance in
cross-project classification. In addition, it can be seen from the figure that there
are some fluctuations between adjacent K values when K is greater than 25,
which may be related to the randomness of the model selection.
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Fig. 1. The median values of f_avg with three approach based on 500 projects
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The experimental results in Figure 1 give us a intuitive view of how well our
cross-project approach performs. In addition, we use multiple contrast test to
verify whether the conclusion is correct, through comparing the overall f_avg
of 500 projects (10 tests, 50 projects at a time) for different approaches(with
different K value). Table 1 shows the result of contrast test. And we reveal some
of the significant turning points with different K value in performance compar-
ison. The p.Values are over 0.05 in row 2, 5 (gray background in the table), and
there are flips between lower boundaries (Lower < 0.5) and upper boundaries
(Upper > 0.5) in these rows. It means there is no statistical significant differ-
ence between each group pair. A significant difference at 5% level occurs in row
1, 3, 4, 6. The lower boundaries and upper boundaries are both greater than 0.5
or less than 0.5, which means that there is a significant difference between the
two sets of comparison data, one of which is better than the other. And we bold
the name of the better method in the figure.

Therefore, we can draw the following conclusions. First, our approach out-
perform the Bellwether method when integrating greater or equal to 9 models of
source projects. Second, our cross-project approach can achieve the performance
of the Within-project method when integrating greater or equal to 25 models.

Table 1. Results of multiple contrast test procedure

Comparison Estimator Lower Upper Statistic p.Value

Ensemble_4 vs. Bellwether 0.552 0.509 0.594 2.823 0.133e-01
Bellwether vs. Ensemble_5 0.503 0.460 0.545 0.151 9.893e-01
Bellwether vs. Ensemble_9 0.559 0.509 0.608 3.234 1.197e-02
Ensemble_24 vs. Within 0.563 0.501 0.624 3.462 4.488e-02
Ensemble_25 vs. Within 0.556 0.493 0.618 3.070 1.490e-01
Bellwether vs. Within 0.664 0.603 0.720 8.859 0.000e+00

7 CONCLUSION

When historical data is not available, engineers often use data from other projects.
In this paper, we propose a new cross-project approach to address issue cate-
gorization problem in the case of inadequate historical data. We evaluate our
approach through an empirical study on open source projects in GitHub, which
compares with the Bellwether and the Within-project method. The comparison
result shows that our approach out-performs the Bellwether and can achieve
the accuracy of the Within-project method. This means that the idea of inte-
gration is encouraging in cross-project classification. In future work, we plan to
investigate the effectiveness of our cross-project approach in different software
engineering scenarios, such as defect prediction or effort estimation.
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