
222 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

RepoLike: amulti-feature-based personalized

recommendation approach for open-source repositories∗

Cheng YANG†, Qiang FAN, Tao WANG, Gang YIN, Xun-hui ZHANG, Yue YU, Hua-min WANG
Key Laboratory of Parallel and Distributed Computing, National University of

Defense Technology, Changsha 410073, China
†E-mail: delpiero710@126.com

Received Feb. 13, 2017; Revision accepted July 20, 2017; Crosschecked Feb. 15, 2018

Abstract: With the deep integration of software collaborative development and social networking, social coding
represents a new style of software production and creation paradigm. Because of their good flexibility and openness,
a large number of external contributors have been attracted to the open-source communities. They are playing
a significant role in open-source development. However, the open-source development online is a globalized and
distributed cooperative work. If left unsupervised, the contribution process may result in inefficiency. It takes
contributors a lot of time to find suitable projects or tasks from thousands of open-source projects in the communities
to work on. In this paper, we propose a new approach called “RepoLike,” to recommend repositories for developers
based on linear combination and learning to rank. It uses the project popularity, technical dependencies among
projects, and social connections among developers to measure the correlations between a developer and the given
projects. Experimental results show that our approach can achieve over 25% of hit ratio when recommending 20
candidates, meaning that it can recommend closely correlated repositories to social developers.

Key words: Social coding; Open-source software; Personal recommendation; GitHub
https://doi.org/10.1631/FITEE.1700196 CLC number: TP391.7

1 Introduction

The comprehensive integration of social me-
dia (Boyd and Ellison, 2007) and software develop-
ment tools (Begel et al., 2010; Storey et al., 2010)
has considerably changed software development in
the Internet age. Social media and mechanisms,
such as star, watch, and @, provide extremely con-
venient and low-cost communication channels for
large-scale collaborative developments. The crowds’
continuous participation and contribution become

* Project supported by the National Natural Science Foundation
of China (Nos. 61432020, 61472430, and 61502512) and the
National Key R&D Program of China (No. 2016YFB1000805)

ORCID: Cheng YANG, http://orcid.org/0000-0002-4782-1645
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2019

the key factors for the success of open-source
projects. Therefore, many open-source software
development communities have shifted their focus
from software projects to developers. For example,
GitHub proposed a new collaborative development
mechanism called “fork,” which has created a new
social programming concept (Dabbish et al., 2012;
Begel et al., 2013). Contributors in such commu-
nities can use the provided social tools to discover
interesting open-source projects, track code develop-
ment activities, or comment freely on source codes
contributed by others. Numerous software users
or open-source enthusiasts are attracted to join the
open-source communities. The social and transpar-
ent form of collaboration helps them achieve con-
siderable software productivity. As of April 2016,

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 223

GitHub had hosted more than 35 million software
code repositories, attracted more than 14 million on-
line developers to participate, and generated more
than 12 million code-merging requests (Yu et al.,
2016).

However, such crowd-based software creation
behavior (Wang H et al., 2014) is usually conducted
in a fully open manner. The massive developers are
distributed around the world and are driven by in-
terest in participating in specific development tasks,
such as bug fixes, code testings, and documentation
improvement. These developers have different per-
sonality traits, educational backgrounds, and exper-
tise levels. Furthermore, their participation in open-
source projects often does not match with their inter-
ests and expertise. Therefore, if we cannot properly
guide this mass of social development activities to
achieve the best match between public intelligence
resources and open-source development tasks, the
open-source development will be affected adversely.
On one hand, a massive number of contributors may
need to spend too much time and effort in finding
proper and interesting open-source projects. On the
other hand, the migration and withdrawal of devel-
opers often increase staff training and project man-
agement costs.

We propose a personalized recommendation
method called “RepoLike” to recommend open-
source projects for developers based on multidimen-
sional features. We quantify the potential correla-
tions between developers and open-source projects
from three different dimensions: the popularity of
the open-source project, the technical relevance of
the project, and the social relevance between the de-
velopers. On the basis of these aspects, we propose
a learning-to-rank-based approach to conduct per-
sonalized recommendation. Specifically, the main
contributions of the study are as follows:

1. A technical-interest measurement model is
proposed, which quantitatively measures the devel-
opers’ personal interests in joining repositories from
technical and social dimensions.

2. A personalized recommendation algorithm
using two different approaches including linear com-
bination and learning-to-rank approach is designed
based on the above-mentioned metrics.

3. Extensive experiments were conducted us-
ing the GitHub dataset containing 16 249 public
contributors and 801 228 repositories. The results

verified the effectiveness of RepoLike in qualitative
and quantitative ways.

2 Motivation

Online contributors in open-source communities
often need to spend much time and effort in selecting
proper projects to which they will contribute from
numerous candidates. A personalized recommenda-
tion system can reduce the cost of this process effec-
tively. However, to achieve this goal we need to solve
two problems. First, high-quality projects should
be identified efficiently because open-source projects
differ significantly in quality. Second, the personal
technical interest of contributors should be measured
effectively to provide personalized recommendations.
In this section, we demonstrate the motivations of
our research through an actual case in the GitHub
community.

In the GitHub community, the massive open-
source projects and developers are interrelated in
different ways, such as the relationships “watch and
star” (between developer and project repository) and
“fork” (between repositories). This kind of correla-
tion information provides an important clue in iden-
tifying high-quality repositories. In the groups of
software project based on rails (Fig. 1), we can infer
that the Diaspora and Paperclip projects should be
of high quality as they are socially close to the rails
repository. Therefore, the recommendation system
may recommend the above-mentioned two projects
to amateurs who are interested in projects based on
rails.

Apart from the relationship between projects,
developers often communicate with each other
through community-based social media. Social con-
nections can help personalize recommendations in a
different manner.

As shown in Fig. 2, Lain Mitchell and Gemma
Cameron are friends as can be inferred from their
communications in the open-source community.
Therefore, their technical concerns or development
interests may be more similar than those with others.
Based on this inference, we can recommend software
projects to them based on their social connection.
For example, we can recommend the project trello-
pipes, in which Lain Mitchell is currently involved,
to Gemma Cameron.

224 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

Mohamagdy/rails

Futurechimp/diaspora

Jaideng123/diaspora

Thorsson/diaspora

Glnarayanan/diaspora

Kousu/diaspora
Moredip/diaspora

Telematica/diaspora

Thedarkone/i18n

Svenfuchs/i18n

JunGroupProductions/rails

Stephencelis/rails

Moregeek/rails

Macournoyer/rails

Tzinfo/tzinfo-data

Merodriguezblanco/rails
Lujaw/rails

Jschumacher/rails

Md5/rails
Deadprogrammer/rails

Midu/rails

Simonc/rails
Sstephenson/hike

Sjasherai/hike
Somebee/rail

Coupa/paperclip
Pcreux/paperclip

Joaomilho/paperclip
Filipegiusti

Vasaristudio/paperclip

Blakefrost/paperclip

Indierockmedia/paperclip

Joevandyk/paperclip

Duonoid/paperclip

Patmcnally/paperclip
Etagwerker/paperclip

Thedarkone/paperclip
Jimryan/paperclip

Mcollina/paperclip

lribeiro/rails

latortuga/rails

Ryanb/rails

Gavingmiller/rails

Fr33z3/rails

Coderunner/rails

Globaldevr/rails
Kemiller/rails

Bihicheng/rails

Capotej/rails

Thedelchop/rails
Mmrobins/rails

Davidcelis/rails

Benhoskings/rails
Ksob/rails

Scottschulthess/rails

Nahrae/rails
Nolman/rails

Hubertlepicki/rails

Scottopherson/rails
Schmurfy/rails

Bradreid/rails

Thibaudgg/rails
Deepakprasanna/rails

Schneems/rails

Jnimety/rails
Bluekelp/railsDlt/rails

Rails/sass-rails

Cajun-code/rails
Fcheung/rails

Justinko/rails
Pezra/rails

Tobiassvn/rails

Andhapp/rails Loremaster/rails
Antonio/rails

Awebneck/rails

Zhlwish/rails
Malachheb/rails

Mvader/rails

rails/rails

Diaspora/disapora
Thoughtbot/paperclip

Fig. 1 Fork network of the rails family

Lain Mitchell Gemma Cameron

Scala

Courser-
scala

Roman-
numerals

Java-
Script

Monitoring

Ruby
Trello-
pipes Challenge

Fig. 2 Context of GitHub developers

3 Personalized recommendation ap-
proach

In this section, we present the detailed descrip-
tion of our personalized recommendation approach,
including the overall framework, the different di-
mensionalities of features, and the recommendation
algorithm.

3.1 Recommendation framework

Compared with the recommendation mech-
anisms in online commercial sites, the biggest

challenge for software recommendation lies in the dif-
ficulties in modeling the developers’ personal interest
in programming. This is because one may take part
in many different projects and the historical data are
often highly scattered.

The key idea of our approach is to take full
advantage of user data in GitHub, and construct
an interest measurement model for each developer
based on their joined projects and socially connected
developers. Using three dimensions including the
project itself, the technical dependency between the
projects, and the social association between the de-
velopers’ measurement models, we can predict the
correlations between developers and the open-source
projects, and then conduct personalized recommen-
dations. Fig. 3 shows the overall framework of Re-
poLike, which includes the following four stages:

1. Acquisition of the historical development ac-
tivities of developers

At this stage, we collect the entire GitHub
dataset and aggregate the distributed development
historical data of developers. The development
historical data collected at this stage are divided
into items including watch, issue, issue comment,
pull-request, pull-request comment, and fork for

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 225

1. Personal history data
acquisition

3. Recommended model training

4. Recommended test

Test set

Personalized
recommendation

model

GitHub

Dataset

Repo networks Social networks

Associated network

Label data

Feature set

Linear model
Learning-to-rank

Top-N candidates

2. Association network
construction

Fig. 3 Overview of the personalized recommendation framework

developers. We obtain the other associated infor-
mation on developers.

2. Construction of the association network
We build the association networks from the

project- and developer-centric perspectives. From
the project-centric perspective, we build an inter-
project and technology-related network based on
technical dependencies between projects. The inter-
project technology association network reflects the
technical relationship between projects. We also
build a developer network based on social connec-
tions of the contributors in the GitHub community.

The technical concern (e.g., concern about the
closely related projects or technology) of a developer
is limited to a certain period of time. The project
technological association network can be helpful in
identifying the closely related projects in which de-
velopers may be interested.

Meanwhile, the developers in GitHub who have
close interactions are more likely to have similar tech-
nical interests. Based on this intuition, we use the
social networking of developers as another impor-
tant factor in the personalized recommendation of
projects.

3. Recommendation model training
The proposed model training consists of two

steps: ranking of training data and feature extrac-
tion of training data. The ranking criterion is the

engagement level of developers’ participation in
projects. Given that developers devote dissimilar
time and efforts to different projects, this variation
reflects the different preferences of developers. The
labeled items can be used as the inputs for train-
ing the recommendation model. Feature extraction
includes mainly the popularity of the project, tech-
nology relevance based on the project’s association
network, and the social connection based on the de-
veloper’s association network.

Detailed feature extraction and measurement
methods will be described in Section 3.2. After
obtaining the order of the training data items and
multi-dimensional features, we propose a personal-
ized recommendation method. This method builds
a recommendation model from the feature set of the
training data, and ranks repositories in a personal-
ized manner. Linear combination and learning-to-
rank approaches are used to optimize the features
between the parameters and to establish the recom-
mendation model.

4. Recommendation result generation

After training the personalized recommendation
model, we can obtain the final recommendation re-
sults of each candidate. In our experiment, we input
the previously obtained testing candidates and ob-
tain the output top-n candidates to test the perfor-
mance of our recommendation model.

226 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

3.2 Feature extraction and quantitative
measurement

We measure the amateur contributors’ techni-
cal preferences and their correlations with projects
on three different dimensions: from project’s
(repository), task’s, and social perspectives. The
three dimensions reflect the relationship between
the developer and the corresponding project from
the perspectives of the project itself, the associated
projects, and the associations between the develop-
ers. Feature extraction is conducted first, and then
the quantification of each dimension.

3.2.1 Project’s perspective

One of the key factors for a contributor to deter-
mine whether to join an open-source project and to
become a long-term contributor or not is the active-
ness of the project (Zhou and Mockus, 2011). Devel-
opers are more likely to participate in open-source
projects that are active in the community. This is
because such projects may have more potential to be-
come more flourishing than those that are less active
or less interesting. Therefore, from the project’s per-
spective, we consider mainly the project’s activeness
and the interest of the contributors in it.

GitHub provides a watch-and-fork mechanism.
A contributor can use the watch-and-fork mechanism
to track the project or create its new subbranch if
he/she is interested in it. Therefore, the number
of watches and forks a project obtains reflects the
amount of attention developers paid to it. Specifi-
cally, we measure the popularity of projects based on
the number of watches and forks.

1. Watch number
The easiest way to track an open-source project

is to subscribe to it. Contributors can click on the
“watch" button of the project and obtain the latest
real-time information. Thus, the number of watches
the project obtains can reflect the level of interest of
the developers in it.

2. Fork number
Fork is a novel feature provided by GitHub. If

a user is interested in a project and wants to partici-
pate, then he/she can fork the project to his/her own
branch, obtain the source code, and further study or
contribute to the code base. Therefore, the popular-
ity of a project can be predicted by the number of
forks it obtains.

Based on the above two factors, we quantify the
popularity of an open-source project as

pp(j) = nor(watch(j)) + nor(fork(j)), (1)

where pp(j) refers to the popularity of project j

(j ∈ {1, 2, ...}), and watch(j) and fork(j) represent
the numbers of watches and forks of the open-source
project, respectively. Watch and fork reflect differ-
ent levels of developers’ attention. Specifically, fork
is more comprehensive than watch in terms of de-
velopers’ participation. Therefore, for accurate mea-
surement, we normalize the numbers of watches and
forks instead of adding them directly.

3.2.2 Task’s perspective

Software reuse is very common in software de-
velopment, and most software relies more or less on
some other projects or components. Thereby, soft-
ware reuse introduces technical dependencies among
projects. Such technical dependencies form a soft-
ware ecosystem which reflects the technical relevance
among projects.

If a developer is involved in project A and other
projects which exhibit a close technical correlation
with A, then the developer will possibly be inter-
ested in these technically related projects. Based on
this intuition, we use a technical dependency network
among projects and propose a technology-relevance
measurement method based on this network to ob-
tain a quantitative measurement.

Blincoe et al. (2015) comprehensively investi-
gated the technical dependencies between GitHub
projects. They explored the links to other projects
in text items including issue, pull-request, comment,
and submitting information, and viewed these links
as evidence of technical dependency. In this study,
we build a project-dependent network based on the
research data provided by Blincoe et al. (2015). Then
we measure the degree of technical relevance between
the project the developer participated in and the
other technically related projects. Based on this, we
can quantify the correlation between the developer
and the candidate projects. The specific approach is
as follows:

First, we build a dependency network based on
the technology dependencies between open-source
projects. In this network, each node represents an
open-source project. Each edge indicates that a
technical dependency exists between two connected

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 227

items. The weight of the edge indicates the degree
of technical dependency, which can be measured by
the number of connections between them.

Second, we build a sub-dependency network
which focuses on the projects a specific developer
used to participate in based on the dependency net-
work. In this sub-network, the developer is the center
and is connected directly to all open-source projects
that he/she participated in.

For example, Fig. 4 presents a case in which the
developer is involved directly in the Repo1, Repo2,
Repo3, and Repo4 projects. Technical dependencies
are found between Repo1 and Repo2. The numbers
of links between the two projects are two and five,
respectively. This is similar for other technology-
dependent projects.

Developer

Repoa

2

1

5

4

2

3

Repo2 Repob

Repo1

Repod

Repo4
Repoc

Repo3

Participation

Correlation

Fig. 4 Example of developer-oriented dependency
sub-network

Finally, we design the following technical corre-
lation computing formula between the developer and
the candidate based on the user-oriented technology-
dependent sub-network:

tr(a, j) =
∑

i

nref(i, j), (2)

where tr(a, j) represents the technical dependency
between the given developer a and project j, and
nref(i, j) represents the technical relevance between
projects i and j, where project i refers to all the
projects in which developer a participates (i ∈
{1, 2, ...}). We define the technical correlation be-
tween a developer and a candidate project as the sum
of the technical correlations between the candidate
project and all the projects in which the developer

has been involved. Moreover, the degree of technical
dependency between two projects is represented as
the weight of the corresponding network edge.

For example, Fig. 4 shows the technical corre-
lation between the developer and repositories. The
developer is involved in projects 1 and 2, and the
numbers of links between projects Repoa and Repo1,
Repoa and Repo2 are two and five, respectively.
Thus, we can quantify the technical correlation be-
tween the developer and project Repoa to be seven.

3.2.3 Social perspective

As a social programming site, GitHub provides
social mechanisms, such as @, watch, and com-
ments, to accelerate developer interaction and im-
prove transparency among developer groups. Using
these services, developers can easily and efficiently
build relationships with other developers and inter-
act with them. The social relationships of a devel-
oper in GitHub reflect his/her personal technical in-
terests. In GitHub, the most common social activity
is commenting on others’ issues and pull-requests.
Therefore, we analyze social relations based on the
following comment activities:

1. Issue comment
GitHub offers a management system called “is-

sue tracker” system that can be used by contrib-
utors to discuss deficiencies in the project or to
propose new functional requirements, including dis-
cussing the issue in detail or providing a solution or
recommendation.

2. Pull-request comment
Pull-request is an efficient mechanism for non-

core developers to branch and be involved in project
development and contribute to it. However, the pull-
requests are often submitted by massive contributors
and their quality usually varies a lot. Therefore,
before a pull-request is merged, it is often discussed
and tested in depth by a large number of relevant
contributors.

For contributors, the issues or pull-requests they
submit or comment on are usually those they are in-
terested in or are familiar with. The fact that differ-
ent developers participate in the same issue or pull-
request indicates that they share a common interest
or technical preference. A higher similarity between
developers means a larger possibility that they are
interested in the same project. In this study, we
build a social network between developers based on

228 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

contributors’ participation in pull-requests. Then we
measure the social association based on this network.

The social network reflects the social correla-
tions between developers. In this network, each node
represents a developer, and the edge is the number of
co-occurrences between developers in the same issue
or pull-request comments. The greater the number
of co-occurrences, the more similar the preferences
between the two developers.

Based on this social network, we can measure
the social association between a developer and a
specific project through the media of a socially con-
nected developer. We design a method to calculate
the degree of association as follows:

sr(a, j)=
∑

b

nint inacy(a, b) · nparticipation(b, j), (3)

where nint inacy(a, b) represents the degree of so-
cial association between developers a and b,
nparticipation(b, j) represents the degree to which de-
veloper b participates in project j, and b is the set of
all other developers that are socially associated with
developer a.

Fig. 5 shows an example. The edge between
developers indicates that a social relationship exists
between them, and its weight is the number of co-
occurrence participants in the issue or pull-request.
The edge between the developer and the project in-
dicates that the developer is involved in the project,
and its weight indicates the depth of the developer’s
participation in the project. Consequently, we can
obtain the total number of participants, the total
number of pull-requests, and the total number of
issues and pull-request comments in which the de-
veloper is involved.

In Fig. 5, the central developer and the other
four (i.e., D1, D2, D3, and D4) co-appear in the
issues or pull-requests of several projects. Both de-
velopers D1 and D2 are involved in project Repoa.
Bridging through these two developers, we can cal-
culate the association between the central developer
and Repoa as 42.

3.3 Multi-dimensional feature based recom-
mendation algorithm

The three different perspectives from project,
task, and social connection reflect the relationship
between a developer and the recommended candi-
date from different dimensions. Combining them to

Developer

4

10

6

15

3

2

D1
3

5

6

4

Repoa

Repod

Repob

Repoc

D2

D3

D4

Developer

Open-source project

Participation

Correlation

Fig. 5 Social connections between developers and
repositories

fully and accurately measure the correlation between
the developer and the project is the key to conduct
personalized recommendation. We propose two dif-
ferent approaches in this subsection.

3.3.1 Linear combination based recommendation

A basic approach to aggregate the three dimen-
sions of features is to combine them linearly. How-
ever, as the three perspectives are not in the same
dimension, we need to normalize them first. As a
result, each feature operates at the same order of
magnitude such that parameter adjustment is facil-
itated. The linear combination can be carried out
as

score(a, j) = α nor(pp(j)) + β nor(tr(a, j))

+ γ nor(sr(a, j)), (4)

where nor(x) = x/max(x), α, β, and γ are weight
coefficients, and pp(j), tr(a, j), and sr(a, j) in the nor
function represent the project level, the task level,
and the social level, respectively.

First, we normalize the value of the three di-
mensions and then multiply each of them by different
weights before summation. We adjust the parame-
ters experimentally based on the results of feedback
for optimization. Then the correlation score between
a candidate project j and the developer can be ob-
tained. Finally, we rank all candidate recommenda-
tions and recommend the top-N candidates to the
developers according to their scores.

3.3.2 Learning-to-rank based recommendation

Learning-to-rank (LTR) is a machine learning

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 229

method based on a given set of features. This
method uses a training dataset construction model
to learn the final sort function. The LTR method has
been used to analyze and sort software in software
engineering (Zhu et al., 2015; Chen et al., 2016). In
this study, we analyze the historical data of users, ex-
tract multi-dimensional features, and construct the
target ranks based on users’ participation in projects.
Based on this set of items, we carry out supervised
learning and establish the final sorting model. The
whole procedure can be divided into three stages as
follows:

1. Recommended candidates filtering

At this stage, we aim to find the recommended
candidates and the training dataset for a given devel-
oper. Based on the sub-project-dependent network
around the developer, we can obtain all the techni-
cally correlated projects depending on the projects
in which the developer is already involved; based on
the developer’s social network, we can obtain all the
socially connected developers and all the projects in
which these developers have participated. Based on
the results, we view these projects in which the given
developer has not participated as the recommended
candidates, and the projects in which he/she is al-
ready involved as the LTR’s training dataset.

2. Rank marking

Ranking is the target value for the LTR method
to learn. It reflects the importance of data records.
A higher ranking means a higher importance. The
historical data of users show that if the user conducts
a large number of activities on a project, then this
user is highly interested in it. Thus, we select the
actual frequency of participation in the project (i.e.,
the number of activities per project) as the target
value and use them as the marked value for the final
LTR model training and testing.

3. Model training

The datasets for LTR training can be obtained
by extracting the feature sets and ranking the items.
In the dataset, each record reflects the relationship
between a user and a target as recommended items.
The eigenvalues are the characteristics of the three
dimensions between the user and the project. The
target value is the user participation in the marking
process. Based on these data, we can train an LTR-
based recommendation ranking model. Specifically,
we use the RankLib package to build the LTR model.

4 Experimental settings

In this section, we introduce the experiment
dataset and the evaluation metrics.

4.1 Experiment datasets

We used the dataset provided by GHTorrent
(released in June 3, 2016), which was also adopted
in our previous work (Yang et al., 2016). We first
found some representative developers as experimen-
tal samples. Then we analyzed and evaluated our
recommendation method using the historical data of
these developers. A developer could be chosen only
if one of the following conditions is fulfilled: (1) the
status had experienced a change from being inac-
tive to active in the community; (2) the developer
had contributed to more than one project; (3) the
developer had communicated with other developers
in the GitHub community. Based on the aforemen-
tioned principles, we selected 16 249 developers as
candidates for the project. These developers had
participated in at least five open-source projects and
followed 5 to 50 developers. The extracted behavior
information of these developers includes issue, pull-
request, and corresponding comments, as well as the
fork relationship between projects, the watch rela-
tionship between users and projects, and the “fol-
low” relation among users. The behavior informa-
tion in the dataset involved 144 543 developers who
intersected with the selected candidates and covered
1 705 841 related open-source projects.

In the final experiment, we excluded projects
with no fork or watch, and obtained 801 228 open-
source projects. In constructing the dependency
network between projects, we used the inter-project
technical dependency data in Blincoe et al. (2015).

Afterwards, we divided the whole dataset into
two parts: one for the training model, and the other
for evaluation.

4.2 Evaluation metrics

We established a set of scientific indices to eval-
uate the effectiveness of our method. We grouped
the datasets based on the creation time of the cor-
responding activity. The projects in which the de-
veloper had been involved during the most recent
year were used for testing. The previous data were
used to train our recommendation model. During
the evaluation process, the time span of the training

230 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

dataset was controlled to validate the influence of
different information on the recommendation model.
For feature selection, we evaluated both individual
and combinational features to verify the effective-
ness. For the LTR model training phase, we used a
cross-validation method to divide the dataset into N

parts with an equal size. One was used as the test
dataset, and the other parts were used as the training
sets. The model was conducted via N iterations, and
there were also N tests being carried out to evaluate
the model.

In actual situations, taking part in a repository
takes a lot of time. Thus, users cannot join many
repositories in a limited time. In our dataset, the
average count of joining repositories per user in one
year is 19.5; however, the scope of our recommen-
dation reached 337.8 repositories out of 801 228.0,
making it difficult to obtain an ideal result and to
effectively evaluate our method. Thus, we used our
own evaluation metric.

We used the hit ratio as the criterion for eval-
uation. The number of available developers to the
recommendation results can be obtained accurately.
We set bounds for the number of recommended
items (i.e., top 5, 10, 15, and 20) to obtain the
recommendation results that different numbers of
projects can recommend. The hit ratio was defined
as the percentage of developers who actually were
participating in the recommended projects over all
developers:

ratiohit = nhit/ntotal. (5)

The quality of the recommendation results is an im-
portant aspect in evaluating the performance. We
used mean reciprocal rank (MRR) as our evaluation
model in comparing the LTR method with the linear
method. MRR is a general evaluation metric for a
sorting algorithm and can reflect the rationality of
the ranks of recommendation results. MRR can be
formulated as

MRR =
1

|Q|
|Q|∑

i

1

ranki
, (6)

where |Q| is the result of all hits, and ranki is the
ranking of hit result i in the recommendation list.

5 Experimental results and analysis

To evaluate the results of our recommendation
approach, we first compare the performance of the
linear combination approach using the combination
of different dimensions of features and different time
intervals in Section 5.1. Then we analyze the LTR-
based recommendation approach in Section 5.2. In
Section 5.3, we present a practical case to demon-
strate the results.

In the experiments, we tested various kinds of
combinations of three dimensional features. The re-
sults were affected by parameters including α, β, and
γ. We determined these parameters through itera-
tive experimentation on a given dataset, and they
were set to α = 0.50, β = 0.55, and γ = 0.45. If one
type of feature is not combined in the experiment,
then the corresponding factors will be set to 0.

5.1 Recommendations based on linear combi-
nation model

5.1.1 Recommendation performance using different
dimensions of features

In this experiment, we analyzed mainly the im-
pacts of the three feature dimensions, namely the
project popularity (PL), the project technical de-
pendence (TL), and the developer social relevance
degree (SL). Then we discussed how to improve the
performance of the model.

First, we built the model using each type of fea-
ture to verify their validity in recommendation. In
this process, only the social network and project-
dependent network can limit the scope of project
selection. Accordingly, we compared the recommen-
dation model using only TL and SL.

As shown in Table 1, TL and SL performed
similarly in single-dimension experiments. They ob-
tained the best results for the top-20 recommenda-
tions with 11.77% and 11.60% hit rates, respectively.
Their hit rates are 6.04% and 6.24% for the top-5
recommendations. The results suggest that using
TL or SL alone to build the recommendation model
can achieve a certain effect; however, the overall ef-
fect can still be improved.

We then compared the recommendation perfor-
mance using multi-dimensional information, which is
the information of the combination of any two of the
three dimensions (PL, TL, and SL). In particular,

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 231

Table 1 Comparison of recommendation performance
based on different dimensions of features

Feature
dimension

Hit rate (%)

Top 5 Top 10 Top 15 Top 20

TL 6.04 8.52 10.45 11.77
SL 6.24 8.47 10.40 11.60

TL: technical dependence; SL: social relevance degree

we used the linear combination of multi-dimensional
features. Fig. 6 presents the detailed results.

0
2
4
6
8

10
12
14
16
18

5 10 15 20

H
it

ra
tio

 (%
)

Top-N recommendations

TL SL TL+SL PL+SL PL+TL

Fig. 6 Comparison of recommendation performance
for combinations of two-dimensional information
TL: technical dependence; SL: social relevance degree; PL:
project popularity

As shown in Fig. 6, the results of all the
two-dimensional information recommendation mod-
els are better than those of the single-dimension
model. The PL+TL combination is better than the
TL+SL and PL+SL combinations. The hit rate of
PL+TL combination model reaches 16.70%, which
is 4.93% higher than the best result of the single-
dimensional model.

Fig. 7 shows a comparison of the results of a
recommendation model constructed with three di-
mensions and a combination of any two dimensions.
The results of the combination of three dimensions
are better than those of the combinations of two di-
mensions. The former combination reaches a 19.38%
hit rate for the top-20 recommendations. The perfor-
mance is nearly twice that of the single-dimensional
model for the top-5 recommendations. Comparison
results show that better personalized recommenda-
tions can be achieved when different dimensions of
features are used in building the recommendation
model.

0

5

10

15

20

25

5 10 15 20

H
it

ra
tio

 (%
)

Top-N recommendations

PL+SL TL+SL PL+TL PL+TL+SL

Fig. 7 Comparison of recommendation performance
for combinations of multi-dimensional information
TL: technical dependence; SL: social relevance degree; PL:
project popularity

5.1.2 Influence of test time interval on recommenda-
tion results

Developers usually require a lot of time and ef-
fort to participate in an open-source project. On
one hand, developers are cautious when choosing
to join an open-source project. On the other
hand, developers can contribute to only a lim-
ited number of projects because of limited time.
Therefore, the actual developer participation in
projects is limited over a given period of time. This
situation does not mean that developers are not in-
terested in other projects, or that the recommen-
dations of projects in which they have not actually
participated are inaccurate. The reason can be that
no recommendation has been provided to the devel-
oper such that this developer may not notice the
corresponding project or does not have enough time
to be involved. The project may still be attracted to
the developer given sufficient time. In this subsec-
tion, we analyze the influence of different test time
intervals on the recommendation results.

We divided the activity data in GitHub into
three different time intervals as the test datasets,
including 3, 6, and 12 months. The projects in
which the given developer actually participated dur-
ing the test time interval were viewed as the ground-
truth. We adopted a linear combination model with
multi-dimensional features to compare the test re-
sults. Fig. 8 shows the specific experimental results.

Fig. 8 compares and analyzes the recommen-
dation accuracies under different test time windows
with the same number of candidates. The overall ac-
curacy shows a rising trend with the increase of the
time interval. A long test window results in a high
recommendation hit rate regardless of the number of
recommended candidates. With regard to the devel-

232 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

0

5

10

15

20

5 10 15 20

Hit _12 months Hit _6 months Hit _3 months
25

Top-N recommendations

H
it

ra
tio

 (%
)

Fig. 8 Influences of different snapshots on the hit
ratio

opers’ actual participation, they may not participate
in too many recommended projects in a relatively
short period of time (such as three months), but may
participate in more projects over a longer time. This
suggests that, given sufficient time and energy, the
developers may actually participate in many more
of the projects listed in the recommendation results.
Therefore, the actual participation in the project as
the recommended ground-truth of the evaluation cri-
teria is significantly strict. In other words, the actual
recommendation performance should be better than
the experimental results shown in Fig. 8. Developers
require much time to search for open-source projects
in which they may be interested. Thus, personal-
ized recommendation can accelerate the process and
promote the development of open-source software.

5.2 Recommendation based on LTR model

In this subsection, we compare the LTR model
based recommendation results with those based on
the linear combination model. Table 2 shows the
comparison between the hit ratio and the MRR re-
sults. As we can see, the hit ratios of the top-5
to top-20 recommendations obtained using the LTR
model are better than those obtained using the man-
ual tuning linear model. In the promotion range, the
top-5 and top-10 recommendations received a large
increase, whereas the top-20 recommendations re-

tained a small increase. This result indicates that
LTR can better explore the relationship between
features but present limited feature selection per-
formance as the final increase is limited. Under
the MRR index, the LTR results are also superior
to those of the linear model. This finding further
demonstrates that LTR can better prioritize the pos-
sible outcomes.

On this basis, we analyzed how the additional
social connection information would affect the rec-
ommendation performance for both approaches. The
promotion accuracies of recommendation are shown
in Table 3.

As the number of features increases, the tuning
capability of the linear model with manual tuning
becomes limited. Furthermore, the enhancement in
LTR becomes considerably larger than that of man-
ual tuning. Finally, the hit rate and MRR of LTR
are improved significantly.

5.3 Case study

We chose the recommendation results for the
top-100 developers according to MRR. We aimed to
find the reasons for error results and why correct
results are ranked behind.

In our model, we neither analyzed the fine
granularity of user activities, nor established the
relationship between developers according to their
differences.

We analyzed Dan Rasmussen (Table 4) and
found that, for developer Alex Bubenshchykov who
was connected to Dan, many of his related projects
were recommended correctly. Even though they
had commented on each other only one time, three
projects were recommended at the top. However,
for developer Mathias Buus who had communicated
eight times with Dan on issues, three of the projects
he had participated in were recommended to Dan.
Because the connection between Mathias and Dan

Table 2 Comparison of recommendation performance for linear-combination model and LTR model

Recommendation
Hit ratio (%) MRR (%)

Linear mode LTR Rate of increase Linear mode LTR Rate of increase

Top-5 9.46 11.44 20.93 0.0538 0.0657 22.12
Top-10 14.00 15.28 9.14 0.0599 0.0708 18.20
Top-15 17.02 17.44 2.47 0.0622 0.0725 16.56
Top-20 19.38 19.60 1.14 0.0635 0.0734 15.59

LTR: Learning-to-rank; MRR: mean reciprocal rank

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 233

Table 3 Comparison of recommendation performance for the linear-combination model and LTR model after
introducing additional social connection information

Recommendation
Hit ratio (%) MRR (%)

Linear mode LTR Rate of increase Linear mode LTR Rate of increase

Top-5 10.57 16.04 51.75 0.0609 0.1172 92.45
Top-10 15.07 20.20 34.04 0.0669 0.1227 83.41
Top-15 18.44 23.16 25.60 0.0695 0.1251 80.00
Top-20 20.99 25.04 19.29 0.0709 0.1262 78.00

LTR: Learning-to-rank; MRR: mean reciprocal rank

Table 4 Recommendation results for Dan Rasmussen

Name Related Related Join
of Repo developer Repo or not

Mocha-jshint Alex Bubenshchykov – Yes
Nodeerrors Alex Bubenshchykov – Yes
Moduleconfig Alex Bubenshchykov – Yes
Node-browserify Mathias Buus – No
Monu Mathias Buus – No
ScreenCat Mathias Buus – No
Node-webkit – Async No
Jsq Alex Bubenshchykov – Yes
Mongoobject Alex Bubenshchykov – Yes
Errortoenglish Alex Bubenshchykov – Yes
Singlequote Alex Bubenshchykov – Yes

was tighter, the results ranked in front of the other
four projects of Alex. We compared Alex with Math-
ias and found that Mathias was much more active
than Alex in GitHub. Alex owned 23 reposito-
ries, had 30 stars and 23 followers, whereas Mathias
owned 621 repositories, had more than 1100 stars
and 2900 followers. Hence, Mathias and Dan tended
to have a stronger relationship. Although Dan was
not that active in GitHub, we cannot deny that
Mathias’ activeness had a large impact on our rec-
ommendation model.

Therefore, we believe that when calculating the
relationship between developers, we should consider
not only the incidence relation of issue comments,
but also the number of projects in which users par-
ticipate. If one is very active and has many interests,
we should weaken the influence of the relationship.

For the fine granularity of project information,
different projects impose different restrictions on
developers.

For a developer in our recommendation list, the
rails project ranked higher than the symfony project.
However, the relationship between symfony and this
developer was more stronger, because project sym-
fony was mentioned twice in project monolog which

the developer had participated before. Even so, rails
ranks higher than symfony in the final recommenda-
tion list, because rails was much more popular than
symfony.

According to our analysis, we believe that the
difficulty of participation should be taken into con-
sideration, including project scale, developer level,
and the relation between developers and projects.
For rails, there is a standard development process
which should be abided by strictly. Meanwhile,
the project scale is very large and there are many
participants. This accelerates the solution of is-
sues. Therefore, it is difficult for developers to
contribute.

There is something that needs to be improved
in our model. We can involve more factors that can
represent the activeness of projects comprehensively.
At the same time, we should differentiate different
dimensions.

From the recommendation results for developer
Hydai (Table 5), we found that Hydai did not par-
ticipate in the recommended project ranking in a 3rd

place. However, he participated in projects rank-
ing the 4th and 16th. These three projects had
no difference in our model except in project active-
ness. Therefore, we can see that the measurement
of project activeness is not always suitable. Besides
forking and watching, there are some other factors
that can represent the activeness of projects, e.g.,
starring. Different factors have different effects and
should be treated differently.

Table 5 Results of Hydai

Rank of Name of Fork Watch Join
the result repo number number or not

3 Irc_log 6 36 No
4 NTHU_course 12 10 Yes
16 Tioj 3 10 Yes

234 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

In GitHub, forking, watching, and starring are
all important factors reflecting the activeness of
projects. Forking is to clone repositories. Watch-
ing can show users’ interests because watchers can
receive real-time discussion and other information
about the target project. Starring is similar to vot-
ing up, which is the simplest action among the three.
However, it can still represent users’ interests. In
our recommendation model, we should treat them
as different actions and allocate them with different
proportions instead of simply summing them. We
will improve the model in our future work.

6 Related work

The rapid growth of open-source software not
only provides considerable reusable resources, but
also induces the problem of information overload.
Many researchers have studied software recommen-
dation and retrieval technology to solve this prob-
lem. According to the different types of recommen-
dation objects, the relevant work focuses mainly on
the source code, developer, and documentation of
the recommendation and search engine technology.

6.1 Source code recommendation

In software engineering, software source code
is the most frequently reused component. Thus,
reusable source code retrieval and recommendation
has been explored widely.

Most studies consider the software source code
as a text and use text mining technology to ana-
lyze the text similarity and thus locate the source
code. Ye and Fischer (2002) proposed a method,
called “CodeBroker,” to extract the names of meth-
ods, classes, and comments from the source code of
the software. This method uses the extracted text
information to represent the source code, and lever-
ages the semantic similarity to find relevant source
code.

Grechanik et al. (2010) used information re-
trieval and static analysis techniques to locate the
required source code. McMillan et al. (2010) used
the application programming interface (API) call in-
formation in the source code as a feature to com-
pare and to discover similar software. In addition
to the text information, the software source code
itself is structured data. It contains valuable struc-
tured information that can be used as the feature for

recommendation. Such has been investigated to re-
trieve and locate structure-similar software (Holmes
and Murphy, 2005; Xie and Pei, 2006; Lozano et al.,
2011). Xie and Pei (2006) leveraged the structure
information of source code, and proposed a frequent
item based approach to recommend code examples
for API usage. They first gained related source
code files through search engines, mined the usage
patterns of API in the retrieved codes, and then
recommended summarized API usage code snipets.
Social media is a new source of information for source
code recommendation. The Q&A communities like
StackOverflow (https://stackoverflow.com) cover a
large number of software-relateddiscussion posts and
code snippets. Zagalsky et al. (2012) used group
discussion and voting information to measure the
quality of code fragments. Based on this, they could
efficiently rank the proposed code fragments and rec-
ommend high-quality code snippets to developers.

Recommendation systems usually rely on con-
textual information, and search engines can use the
query keywords entered by users to retrieve the
required resources. At present, many researchers
have proposed and designed the corresponding soft-
ware source code search engines. Bajracharya et al.
(2009) designed and implemented a large-scale open-
source code retrieval and analysis system, named
“Sourceer,” by fully using structured information,
such as references and dependencies in the code.
Kokkoras et al. (2012) provided developers with a
single search interface in a search system, named
“OCEAN,” which aggregates search results from mul-
tiple web search engines and presents them to the
user through a single portal. The OSSEAN pro-
posed by Yin et al. (2015) is an analytical search
platform for global open-source software. This
platform crawls from the open-source software col-
laborative development community and knowledge-
sharing community of massive open-source software
resources. The platform also contains large-scale
participants and feedbacks contained in the group
wisdom on open-source software, allows ranking,
and recommends high-quality open-source software.
Brandt et al. (2010) incorporated the web search
interface into the integrated development environ-
ment. This method allows developers to easily find
sample codes on the integrated development envi-
ronment (IDE) while developing the program. The
analysis of most current work related to program de-

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 235

velopment is mainly at the source code level. How-
ever, our work is based on the developer as the core
and the number of projects from the recommended
list in which the developer will be interested.

6.2 Experts’ recommendation

In globalized and distributed software devel-
opment, quickly and accurately finding a suitable
person to solve a given problem or to complete
the project development is a challenging but valu-
able problem. This issue has been investigated
intensively.

Task assignment is the most common kind of de-
velopment and management activity in software de-
velopment. This activity is important in improving
the efficiency and quality of software development.
Anvik et al. (2006) first used a machine learning al-
gorithm to find historical issues that are similar to a
given issue based on textual information, and then
sorted and assigned the developers involved in the
historical issue revisions to the specified issue. Jeong
et al. (2009) and Bhattacharya and Neamtiu (2010)
constructed a graph based on the evolution history of
a given issue and then used the classification method
to find the staff for the right solution. Yu et al.
(2016) investigated the overloading of pull-requests
and proposed a reviewer recommendation technique
based on developer social information and technical
interest.

Surian et al. (2011) constructed a network called
“development project language/software class” to
find the right collaborator. This network defines a
measure of developer social distance based on the
distance and recommended potential collaborators.
Canfora et al. (2012) studied the social and techni-
cal activity of developers by analyzing mailing lists
and version controls to recommend a better “guide”
for new entrants. The relevant research proposed
by technical experts discusses mainly creating rec-
ommendations from the historical development ac-
tivities and social behaviors of developers. These
studies have provided enlightenment on how to mea-
sure the technical capability and technical interest of
developers.

6.3 Knowledge document recommendation

Unlike commercial software, open-source soft-
ware development usually lacks standardized docu-

mentation. Thus, reusing open-source software is
difficult for developers. However, rich documents
on the Internet have become an important source of
knowledge on this type of software. For example,
the StackOverflow discussion paper on the Android
API covers 87% of all class files in Android; the dis-
cussion has been viewed more than 70 million times
(Allamanis and Sutton, 2013). At present, many re-
searchers focus on the issue of knowledge document
recommendation for developers.

Favre et al. (2012) proposed a method based on
pattern matching to locate documents corresponding
to source code. Chen and Grundy (2011) combined
regular expressions, keywords, and clustering meth-
ods. They also improved the recommendation accu-
racy of the support vector machine (SVM) model.
Rigby and Robillard (2013) assisted in finding rele-
vant discussion by extracting code judgments from
posts.

Bacchelli et al. (2012) designed an Eclipse plug-
in that automatically links to the corresponding
StackOverflow discussion posts based on the code
entered by the developers in the editor. Wang T
et al. (2014) focused on the automatic connection of
the item issue with StackOverflow and proposed a
method of combining semantic similarity and tem-
poral locality to find and locate the discussion posts
that are related closely to issues. Consequently, par-
ticipants receive comprehensive information about
the issue to better address it.

7 Conclusions and future work

The crowds’ continuous and active participation
becomes more and more important for the success
of open-source software. Achieving the best match
between the personal interest of developers and the
technical requirements of open-source projects is the
key to retain participants and to promote the sus-
tainable and rapid development of projects. How-
ever, it is a great challenge for developers to quickly
and accurately locate the desired repositories be-
cause of the large-scale and high-speed growth of
open-source projects, as well as the highly decentral-
ized activity data of their participation.

In this study, we have proposed a method called
“RepoLike”, which explores multi-dimensional fea-
tures to measure the potential correlation between a
developer and a project. We used linear combination

236 Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237

and LTR approaches to aggregate different levels of
features, and proposed a personalized recommenda-
tion method. Specifically, we considered the charac-
teristics of the open-source project itself, the techni-
cal relevance between the open-source projects, and
the social relevance degree among the developers.
Finally, we conducted comprehensive experiments to
validate the proposed approaches. The experimental
results showed that our method can achieve a high
accuracy for recommending open-source repositories
to developers.

We plan to extend the present study in the fol-
lowing aspects: First, current technical dependencies
between open-source projects consider the technical
parameters in only the comments. Some other real
technical dependencies from other sources are over-
looked. We will further trace the source code and
comprehensively examine the level of dependencies.
Second, apart from direct interaction in terms of is-
sues and pull-requests, the developers in GitHub can
modify the same code file and communicate indi-
rectly. We will consider this additional information
in investigating the social association between devel-
opers. Finally, we will send the results to some of the
corresponding developers in GitHub to obtain their
feedback on the recommendation results. Accord-
ingly, we can precisely evaluate the accuracy of the
proposed method in terms of the recommendation
results.

References
Allamanis M, Sutton C, 2013. Why, when, and what: analyz-

ing stack overflow questions by topic, type, and code.
10th Working Conf on Mining Software Repositories,
p.53-56. https://doi.org/10.1109/MSR.2013.6624004

Anvik J, Hiew L, Murphy GC, 2006. Who should fix this
bug? 28th Int Conf on Software Engineering, p.361-370.
https://doi.org/10.1145/1134285.1134336

Bacchelli A, Ponzanelli L, Lanza M, 2012. Harnessing stack
overflow for the IDE. 3rd Int Workshop on Recommen-
dation Systems for Software Engineering, p.26-30.
https://doi.org/10.1109/RSSE.2012.6233404

Bajracharya S, Ossher J, Lopes C, 2009. Sourcerer:
an Internet-scale software repository. Int Workshop
on Search-Driven Development-Users, Infrastructure,
Tools, and Evaluation, p.1-4.
https://doi.org/10.1109/SUITE.2009.5070010

Begel A, DeLine R, Zimmermann T, 2010. Social media for
software engineering. FSE/SDP Workshop on Future
of Software Engineering Research, p.33-38.
https://doi.org/10.1145/1882362.1882370

Begel A, Bosch J, Storey MA, 2013. Social networking
meets software development: perspectives from GitHub,
MSDN, Stack exchange, and Topcoder. IEEE Softw,
30(1):52-66. https://doi.org/10.1109/MS.2013.13

Bhattacharya P, Neamtiu I, 2010. Fine-grained incremental
learning and multi-feature tossing graphs to improve
bug triaging. IEEE Int Conf on Software Maintenance,
p.1-10. https://doi.org/10.1109/ICSM.2010.5609736

Blincoe K, Harrison F, Damian D, 2015. Ecosystems in
GitHub and a method for ecosystem identification using
reference coupling. IEEE/ACM 12th Working Conf on
Mining Software Repositories, p.202-207.
https://doi.org/10.1109/MSR.2015.26

Boyd DM, Ellison NB, 2007. Social network sites: definition,
history, and scholarship. J Comput-Mediat Commun,
13(1):210-230.
https://doi.org/10.1111/j.1083-6101.2007.00393.x

Brandt J, Dontcheva M, Weskamp M, et al., 2010. Example-
centric programming: integrating web search into the
development environment. SIGCHI Conf on Human
Factors in Computing Systems, p.513-522.
https://doi.org/10.1145/1753326.1753402

Canfora G, di Penta M, Oliveto R, et al., 2012. Who is
going to mentor newcomers in open-source projects?
ACM 20th Int Symp on the Foundations of Software
Engineering, Article 44.
https://doi.org/10.1145/2393596.2393647

Chen X, Grundy J, 2011. Improving automated documen-
tation to code traceability by combining retrieval tech-
niques. 26th IEEE/ACM Int Conf on Automated Soft-
ware Engineering, p.223-232.
https://doi.org/10.1109/ASE.2011.6100057

Chen X, Qin Z, Zhang Y, et al., 2016. Learning to rank
features for recommendation over multiple categories.
39th Int ACM SIGIR Conf on Research and Develop-
ment in Information Retrieval, p.305-314.
https://doi.org/10.1145/2911451.2911549

Dabbish L, Stuart C, Tsay J, et al., 2012. Social coding
in GitHub: transparency and collaboration in an open
software repository. ACM Conf on Computer Sup-
ported Cooperative Work, p.1277-1286.
https://doi.org/10.1145/2145204.2145396

Favre JM, Lämmel R, Leinberger M, et al., 2012. Link-
ing documentation and source code in a software
chrestomathy. 19th Working Conf on Reverse Engi-
neering, p.335-344.
https://doi.org/10.1109/WCRE.2012.43

Grechanik M, Fu C, Xie Q, et al., 2010. A search engine for
finding highly relevant applications. ACM/IEEE 32nd

Int Conf on Software Engineering, p.475-484.
https://doi.org/10.1145/1806799.1806868

Holmes R, Murphy GC, 2005. Using structural context to
recommend source code examples. 27th Int Conf on
Software Engineering, p.117-125.
https://doi.org/10.1109/ICSE.2005.1553554

Jeong G, Kim S, Zimmermann T, 2009. Improving bug
triage with bug tossing graphs. 7th Joint Meeting
of the European Software Engineering Conf and the
ACM SIGSOFT Symp on the Foundations of Software
Engineering, p.111-120.
https://doi.org/10.1145/1595696.1595715

Kokkoras F, Ntonas K, Kritikos A, et al., 2012. Federated
search for open-source software reuse. 38th Euromicro
Conf on Software Engineering and Advanced Applica-
tions, p.200-203.
https://doi.org/10.1109/SEAA.2012.55

Yang et al. / Front Inform Technol Electron Eng 2019 20(2):222-237 237

Lozano A, Kellens A, Mens K, 2011. Mendel: source code rec-
ommendation based on a genetic metaphor. 26th IEEE/
ACM Int Conf on Automated Software Engineering,
p.384-387. https://doi.org/10.1109/ASE.2011.6100078

McMillan C, Poshyvanyk D, Grechanik M, 2010. Recom-
mending source code examples via API call usages and
documentation. 2nd Int Workshop on Recommendation
Systems for Software Engineering, p.21-25.
https://doi.org/10.1145/1808920.1808925

Rigby PC, Robillard MP, 2013. Discovering essential code
elements in informal documentation. Int Conf on Soft-
ware Engineering, p.832-841.
https://doi.org/10.1109/ICSE.2013.6606629

Storey MA, Treude C, van Deursen A, et al., 2010. The
impact of social media on software engineering practices
and tools. FSE/SDP Workshop on Future of Software
Engineering Research, p.359-364.
https://doi.org/10.1145/1882362.1882435

Surian D, Liu N, Lo D, et al., 2011. Recommending people in
developers’ collaboration network. 18th Working Conf
on Reverse Engineering, p.379-388.
https://doi.org/10.1109/WCRE.2011.53

Wang H, Yin G, Xie B, et al., 2014. Research on network-
based large-scale collaborative development and evolu-
tion of trustworthy software. Sci Sin Inform, 44(1):1-19.
https://doi.org/10.1360/N112013-00128

Wang T, Yin G, Wang H, et al., 2014. Linking stack overflow
to issue tracker for issue resolution. 6th Asia-Pacific
Symp on Internetware, p.11-14.
https://doi.org/10.1145/2677832.2677839

Xie T, Pei J, 2006. Mapo: mining API usages from open
source repositories. Int Workshop on Mining Software
Repositories, p.54-57.
https://doi.org/10.1145/1137983.1137997

Yang C, Fan Q, Wang T, et al., 2016. RepoLike: personal
repositories recommendation in social coding communi-
ties. 8th Asia-Pacific Symp on Internetware, p.54-62.
https://doi.org/10.1145/2993717.2993725

Ye Y, Fischer G, 2002. Information delivery in support of
learning reusable software components on demand. 7th

Int Conf on Intelligent User Interfaces, p.159-166.
https://doi.org/10.1145/502716.502741

Yin G, Wang T, Wang H, et al., 2015. Ossean: mining crowd
wisdom in open source communities. IEEE Symp on
Service-Oriented System Engineering, p.367-371.
https://doi.org/10.1109/SOSE.2015.51

Yu Y, Wang H, Yin G, et al., 2016. Reviewer recommen-
dation for pull-requests in GitHub: what can we learn
from code review and bug assignment? Inform Softw
Technol, 74:204-218.
https://doi.org/10.1016/j.infsof.2016.01.004

Zagalsky A, Barzilay O, Yehudai A, 2012. Example overflow:
using social media for code recommendation. 3rd Int
Workshop on Recommendation Systems for Software
Engineering, p.38-42.
https://doi.org/10.1109/RSSE.2012.6233407

Zhou M, Mockus A, 2011. Does the initial environment
impact the future of developers? 33rd Int Conf on
Software Engineering, p.271-280.
https://doi.org/10.1145/1985793.1985831

Zhu J, Shen B, Hu F, 2015. A learning to rank framework for
developer recommendation in software crowdsourcing.
Asia-Pacific Software Engineering Conf, p.285-292.
https://doi.org/10.1109/APSEC.2015.50

	Introduction
	Motivation
	Personalized recommendation approach
	Recommendation framework
	Feature extraction and quantitative measurement
	Project's perspective
	Task's perspective
	Social perspective

	Multi-dimensional feature based recommendation algorithm
	Linear combination based recommendation
	Learning-to-rank based recommendation

	Experimental settings
	Experiment datasets
	Evaluation metrics

	Experimental results and analysis
	Recommendations based on linear combination model
	Recommendation performance using different dimensions of features
	Influence of test time interval on recommendation results

	Recommendation based on LTR model
	Case study

	Related work
	Source code recommendation
	Experts' recommendation
	Knowledge document recommendation

	Conclusions and future work

