Empirical Software Engineering (2022) 27: 126
https://doi.org/10.1007/510664-022-10143-4

®

Check for
updates

Pull request latency explained: an empirical overview

Xunhui Zhang’ - Yue Yu! © . Tao Wang' - Ayushi Rastogi? - Huaimin Wang'

Accepted: 9 March 2022 / Published online: 4 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Pull request latency evaluation is an essential application of effort evaluation in the pull-
based development scenario. It can help the reviewers sort the pull request queue, remind
developers about the review processing time, speed up the review process and accelerate
software development. There is a lack of work that systematically organizes the factors that
affect pull request latency. Also, there is no related work discussing the differences and
variations in characteristics in different scenarios and contexts. In this paper, we collected
relevant factors through a literature review approach. Then we assessed their relative impor-
tance in five scenarios and six different contexts using the mixed-effects linear regression
model. The most important factors differ in different scenarios. The length of the descrip-
tion is most important when pull requests are submitted. The existence of comments is most
important when closing pull requests, using CI tools, and when the contributor and the inte-
grator are different. When there exist comments, the latency of the first comment is the most
important. Meanwhile, the influence of factors may change in different contexts. For exam-
ple, the number of commits in a pull request has a more significant impact on pull request
latency when closing than submitting due to changes in contributions brought about by the
review process. Both human and bot comments are positively correlated with pull request
latency. In contrast, the bot’s first comments are more strongly correlated with latency, but
the number of comments is less correlated. Future research and tool implementation needs
to consider the impact of different contexts. Researchers can conduct related studies based
on our publicly available datasets and replication scripts.

Keywords Pull-based development - Pull request latency -
Distributed software development - GitHub
1 Introduction

As an important paradigm of distributed software development, pull-based development is
widely used in social coding communities including GitHub and GitLab. Because of the

Communicated by: Igor Steinmacher

< Yue Yu
yuyue @nudt.edu.cn

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org.libyc.nudt.edu.cn:80/dialog/?doi=10.1007/s10664-022-10143-4&domain=pdf
http://orcid-org-s.libyc.nudt.edu.cn:443/0000-0002-9865-2212
mailto: yuyue@nudt-edu-cn-s.libyc.nudt.edu.cn:443

126 Page 2 of 38 Empir Software Eng (2022) 27: 126

temporal and spatial asynchrony of the project participants in this model, the latency of
pull requests is an important issue. For reviewers, understanding the latency of pull requests
leads to a predictable development process and helps managers make plans and decisions. !
For contributors, the latency prediction can remind developers about the remaining time and
accelerate the completion of pull requests (Maddila et al. 2019; Maddila et al. 2020), which
can minimize the abandonment behavior from contributors (Li et al. 2021). For the pull-
based paradigm, latency covers the entire pull request lifecycle and is an important research
area to grasp the pull-based development model as a whole.

Considering the entire lifetime (see Fig. 1), the pull-based development model mainly
consists of the following stages.

1. Contributors (also known as requesters or submitters) first submit the code changes of
their cloned repository to reviewers for inspection in the form of pull requests.

2. With/Without automatic continuous integration (CI) builds, reviewers manually inspect
the code changes and discuss them in comments.

3. The integrator (also called the closer or the merger) evaluates the code changes based
on the review process information and then decides to merge or reject the pull request.

4. After rejecting the pull request, the contributor or project manager may also reopen the
pull request and make further changes for the final merge.

A pull request has multiple states throughout the process, including submit, review, close,
merge, and reopen. Due to CI tools, the review state consists of two sub-states, namely CI
construction and manual review state.

It can be seen from the above states that the lifetime of a pull request is complex, and
there is a lot of research on each stage of the entire lifetime. Research in the submitting state
focuses on the automatic generation of pull request descriptions (Liu et al. 2019), reviewer
recommendations (Jiang et al. 2017; Yu et al. 2014), duplication assessment (Wang et al.
2019; Yu et al. 2018), etc. For the review state, research focuses on the interplay between
continuous integration builds and pull requests (Zampetti et al. 2019) and the influence of
static analysis tools on code review effort (Singh et al. 2017). For the manual review state,
research focuses on the prioritization method of review (v. d. Veen et al. 2015) and com-
menter recommendation (Jing et al. 2017). For the reject or merge stage, research focuses
on the prediction of pull request decisions (Gousios et al. 2014). Reopen state focuses on
the evaluation and analysis of the impact of reopening (Jiang et al. 2019). For the entire life-
time, there are studies of factors influencing pull request decisions (Tsay et al. 2014; Zhang
et al. 2021) and latency (Yu et al. 2015), etc.

Therefore, we can see that exploring the factors across the whole lifetime of a pull request
is helpful to understand the entire process and various states of the pull request. Also, the
open time and close time are two important time points in the pull request lifecycle. The
analysis of the association between factors and latency of the two snapshots can help us
understand the impact of factors’ changes in the review process, which can provide action-
able suggestions to those involved in the pull request. We have previously studied the factors
that influence the final merge decision of pull request throughout its lifetime (Zhang et al.
2021). As a critical research area in the entire lifetime of pull requests, the study of pull
request latency also covers all the states of pull requests. Meanwhile, as part of the effort
evaluation (Maddila et al. 2019), pull request latency analysis and prediction can also help
reviewers save review time, improve review efficiency, and optimize pull request review

Thttps://en.wikipedia.org/wiki/Software_development_effort_estimation

@ Springer

https://en-wikipedia-org-s.libyc.nudt.edu.cn:443/wiki/Software_development_effort_estimation

Empir Software Eng (2022) 27: 126 Page30f38 126

review
manual

-v
_________ » QS
=41
=
@
chango codo &¥ (& &§
cloned repository + CI tools reviewers integrator contributor reviewer/

submit pull request integrator

O contributor

return reopen decision
'

timeline

Solid lines represent operations or the generation of intermediate results; dashed lines represent the state transition or the feedback to contributors.

Fig.1 Workflow of a pull request

priority. Therefore we would like to build on our previous work (Zhang et al. 2021) and
explore the impact of various factors on pull request latency.

Although related work has explored the factors that affect the latency of pull requests,
there is no systematic analysis of the influencing factors and the exploration of factors’
influence in different situations and contexts. Therefore, building on a large-scale and
diverse dataset, this paper conducts an empirical study on the impact of factors in different
situations and contexts on the latency of pull requests. Notably, we explore the following
two research questions:

RQ1 How do factors influence pull request latency?
RQ2 Do the factors influencing pull request latency change with a change in context?

To answer the above research questions, we first collect a comprehensive list of factors
influencing pull request latency by conducting a systematic literature review. Then, we cre-
ate a large-scale and diverse dataset of these factors. Finally, we build models (mixed-effect
linear regression model) for different scenarios (e.g., pull request using CI) and contexts
(e.g., pull request closing time).

This paper makes the following contributions:

1. We collect a dataset of 11,230 projects on GitHub with 63 factors and 3,347,937 pull
requests relating to the latency of pull requests. We open-source the relevant dataset
(Zhang et al. 2021) and model-building scripts.?

2. We present a synthesis of the factors identified in the literature, indicating their
significance and direction in inferring pull request latency.

3. We show the importance of these factors in explaining the latency of pull requests in
different scenarios and how they change within different contexts.

2https://github.com/zhangxunhui/ESE_pull_request_latency

@ Springer

https://github-com-s.libyc.nudt.edu.cn:443/zhangxunhui/ESE_pull_request_latency

126 Page 4 of 38 Empir Software Eng (2022) 27: 126

The rest of the paper is organized as follows. We present related works in Section 2 and
explain our research design in Section 3. We show the results in Section 4 and discuss bot-
related factors in Section 5. We present the discussion and threats in Sections 6 and 7. We
conclude the paper in Section 8.

2 Related Work

This paper interprets software effort estimation from the perspective of modern code review.
Therefore, the related work in this chapter mainly includes traditional software effort
estimation, modern code review, and related research work for pull request latency.

2.1 Software Effort Estimation

Effort estimation has been a critical activity in software engineering that helps software
managers and developers to plan software project development time and monitor the devel-
opment process (Kocaguneli et al. 2011; Trendowicz and Jeffery 2014). Many studies
are focusing on related research in this area. Sehra et al. (2017) analyzed 1178 articles
related to software effort estimation in terms of topic classification and research trends.
The article modeled the research themes by the LDA method and classified 15 topics,
including “factors affecting estimation,” “estimation methods,” etc. There are also many
approaches to software effort estimation, including the neural network-based approach
(Dasheng and Shenglan 2012), expert evaluation-based approach (Jgrgensen 2011), hybrid
approach (Minku and Yao 2011), use-case-based approach (Wang et al. 2009), etc. The
influencing factors associated with effort assessment are complex and diverse, includ-
ing language and cultural differences, team structure, work pressure, team size, and team
familiarity (Lenarduzzi 2015; Altaleb et al. 2020).

Unlike traditional software effort estimation, open source software development differs
in many aspects, including the types of participants involved (e.g., contributors, reviewers),
support mechanisms (e.g., CI tools, bot), contribution and merging strategies, etc. Therefore
the factors involved in effort estimation are different. The importance of these factors may
also vary significantly. Therefore, the pull request effort estimation is very different from
the traditional software effort estimation.

2.2 Modern Code Review

Code review has always been a critical aspect of software engineering practice and is
widely used in open source and industrial software. Unlike traditional code review methods,
today’s form of code review relies more on automated tools and is more lightweight (Bac-
chelli and Bird 2013). Among them, CRITICS (Zhang et al. 2014), ReviewClipse (Bernhart
et al. 2010), and Mylyn Reviews (Ecplise 2011) are IDE-integrated code review tools. Ger-
rit (Gerrit 2021) and CodeFlow (Bacchelli and Bird 2013) are platforms supporting many
successful open source software and companies.

Acting as a new social coding paradigm, the pull-based development model (Gousios
et al. 2014) involves multiple social media, e.g., follow, watch, fork, and is becoming more
and more popular recently (Yu et al. 2014). Unlike Gerrit, the pull-based model focuses
not only on a single commit but also on a whole branch (Vogel 2020). In contrast, pull
request is easy to participate in the contribution process without having to master many git

@ Springer

Empir Software Eng (2022) 27: 126 Page 50f38 126

operations (Atkins 2012). Its well-designed user interface and support for social collabo-
ration help improve the usability and code review process of GitHub (Gerrit 2013). These
characteristics help GitHub get more than 79 million users and 238 million repositories.

Therefore, this paper will take the pull-based development model as an entry point to
explore the impact of factors on effort estimation in modern code review, i.e., which factors
affect the pull request latency.

2.3 Latency Analysis for Pull Requests

The research of pull requests has been a hot topic, including pull request reviewer
recommendation (Yu et al. 2014), automatic description generation (Liu et al. 2019), @-
mechanism empirical study (Zhang et al. 2014), etc. The work involving the whole pull
request lifecycle mainly includes two aspects, i.e., pull request decision and latency (Zhang
et al. 2021). Therefore, a large amount of related research focuses on the study of pull
request latency.

Gousios et al. (2014) constructed a classification prediction model for pull request
latency, where the time required to integrate pull requests is divided into three categories.
Through a small number of factors created at pull request submission time, they calculated
the relative importance of the factors. However, this work only considers the effect of fac-
tors at the time of pull request submission but does not consider the factors that occurred
during the review process, e.g., comments, CI results. Yu et al. (2015) and Yu et al. (2016)
also explored the impact of various factors on pull request latency. They collected poten-
tially relevant factors through a heuristic approach, including the latency and build results
of CI tools. Since many related studies have emerged, there is a lack of a scientific process
to integrate all possible influencing factors. And the discussion of these factors is limited to
the general context only, lacking a discussion of the influence of factors in different contexts
(e.g., whether to include review comments, whether use CI tools, etc.), where differences
in context may lead to differences in the influence of factors. Therefore, to improve the
comprehensive understanding of pull request latency, this paper integrates the possible fac-
tors and considers the influence of factors from different contexts. Maddila et al. (2019)
performed in-process prediction of latency and analyzed the time savings brought by this
prediction tool to software development. However, the work is limited to Microsoft, and
the factors involved are mainly proposed for the characteristics of Microsoft internal teams,
lacking a generalization. Our work takes a global perspective and exploits the diversity of
the data we collect to explore the impact of the factors. Other studies such as Jiang et al.
(2019), Hu et al. (2018), and Zhao et al. (2017) focus on the impact of pull request reopen,
bug fixes, and CI usage on pull request latency, respectively. However, they only focus on
one factor instead of exploring the differences between factors and their relative importance
in explaining pull request latency in a comprehensive perspective.

Overall, this paper integrates all the general quantifiable factors mentioned in related
works that may affect pull request latency from a comprehensive perspective and explores
the impact of factors on pull request latency from different contexts.

3 Study Design
Figure 2 shows the framework of our study. There are mainly four parts. First, we gather

all the papers explaining pull request latency (systematic literature review (SLR)). Second,
we collect data for factors extracted in the above step from diverse GitHub projects (data

@ Springer

126 Page 6 of 38 Empir Software Eng (2022) 27: 126

Q Systematic literature review (SLR) Q Data preprocessing (DP) SM.4 RQI: factors’ influence SM.5 RQ2: different contexts
¢ names
- DP.1 fir s e discover the influence of
actor name WA D N
st PRy | = factors when ot
e unreliable data|) pr opening/closing PR e

aper selection| influence bug_fix p 5 -
T —— 1 Y
- DE2 — |latency

ssssss

|factors — —
sLR 3 |data [ﬁ'xcmrdepmdency] [process factors] | | S
fose PR e
v roject
Q Data collecting (DC) Q Statistical modeling (SM) . -
SM.1 Ilinearif dependency
(GHITGeen & colleced data collinearity b
discover factc
e hip

= B9 GitHub
(=1 —=A > = — 2 - - -
Q:ﬂ‘?] o) =S (] . SM.2 _mulucollmeamy P discover the mﬂ.uence of T e
Se - > factors considering factor in different contexts
-‘ sm3 [interpretation in different contexts

Fig.2 Framework of this paper

collecting (DC)). Third, we preprocess the data for further analysis (data preprocessing
(DP)). Finally, we do exploratory analysis and build models to answer the research questions
(statistical modelling (SM)).

3.1 Systematic Literature Review (SLR)

To gather papers related to pull request latency and collect measurable factors mentioned
in previous studies, we conduct SLR following the guideline of Kitchenham and Charters
(2007). There are mainly three steps, i.e., paper query, paper selection and data extraction.

3.1.1 Paper Query (SLR.1)

Our previous study (Zhang et al. 2021) found that the keyword “pull based” can be related
to the “peer to peer” related studies. Therefore, to limit the search scope, we use keyword
“pull based development” and “pull based model” instead of “pull based”. For the time
related keyword, we choose “lifetime” (Maddila et al. 2019) and “latency” (Yu et al. 2016).
Finally, we defined the boolean search string as follows:

(“pull based model” OR “pull based development” OR “pull request”) AND (“latency”
OR “lifetime”)

We conducted the query on May 15th, 2020. We got 1,273 papers, including 164 from
ACM Digital Library, 1 from IEEExplore, 5 from Web of Science, 5 from Ei Compendex
and 1,098 from Google Scholar.

3.1.2 Paper Selection (SLR.2)

We manually checked the keywords, title and abstract of each paper and excluded papers
for the following reasons:

— not written in English (4 papers)

— have duplications (241 papers)

— have an extension (3 papers)

— not related to pull request latency (1,004 papers)

— explain factors not applicable to GitHub (1 paper), i.e., factors based on mailing list
(Jiang et al. 2013).

— not generalizable to a wider range of projects on GitHub (2 papers), i.e., Microsoft and
C# related factors (Maddila et al. 2019).

@ Springer

Empir Software Eng (2022) 27: 126 Page 7 of 38 126

— not measurable quantitatively (1 paper), i.e., the features relating to the pull request
latency found in a qualitative study (Gousios et al. 2015).

To avoid the missing of related papers, we conducted a one-round backward snowballing
process (Jalali and Wohlin 2012). However, we found no new articles related to the pull
request latency. All in all, we found 17 papers presenting the factors related to the pull
request latency (before May 2020).

3.1.3 Data Extraction (SLR.3)

In total, we extract 45 features from the previous selected 17 studies together with the
description of measurement, the influence direction and significance. To clearly show the
extraction results, we list the symbolic representations of the factors in Table 1 and the fac-
tor’s relationship with pull request latency in Table 9. Table 1 shows 12 developer-related (1
newly added - same_user), 10 project-related (1 newly added - has_comments), and 25 pull
request-related factors. e marks 29 factors that make sense at the submission time of pull
request (e.g., open_pr_num), while the other 18 factors occurred during the review process. x
marks 8 code-related factors present below the dashed line that can change during the review
process (e.g., num_commits). Table 9 presents the articles related to pull request latency and
the factors included in studies, where the meaning of shape, color and filling can be seen in
the title of the table. For example, Yu et al. (2016) proposed the factor core_member, which
is negatively and significantly related to pull request latency in their conclusion.

With the foundation of the prequel work (Zhang et al. 2021), the first author and the
fourth author jointly completed the screening and extraction of relevant factors after the arti-
cle search. During the paper filtering phase, compared to our previous study on pull request
decisions (Zhang et al. 2021), some papers are new, i.e., related to pull request latency only.
Therefore, we only discuss these newly added papers (e.g., Pinto et al. 2018; Hu et al. 2018)
as the papers related to pull request decisions had already reached a consensus between the
two authors. In the data extraction stage, the first author extracted the factors of the papers
focusing on pull request decisions and latency at the same time. For the newly added papers,
the fourth author went through a double-check. For factors that were not sure whether to be
included, such as factors related to Microsoft teams and C# program language only (Mad-
dila et al. 2019). After discussion, we reached a consensus by removing factors that are not
generalizable.

3.2 Data Collecting (DC)

According to the described measurement in related work, we collect the extracted factors
from SLR. The data collection process is based on GHTorrent MySQL3 and Mongo data
dump on June 1st, 2019. Also, we directly extract factors based on GitHub API and the
cloned source repository.

Some pull request-related factors change dynamically throughout the pull request life-
time (e.g., the number of commits contained in a pull request changes when modifying the
pull request during the review process). We refer to these factors as dynamic factors, which
are shown in Table 3. Based on our previous dataset (Zhang et al. 2021), we calculated the
values of these dynamic factors at the time of pull request submission and count the changes
of these factors at the time of pull request submission and closing. By adding these factors,

3http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-06-01..tar.gz

@ Springer

http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-06-01.tar.gz

Empir Software Eng (2022) 27: 126

126 Page 8 of 38

sjuowwod Isanbar [[nd ur syuedionted jo #

uondrosap jsanbar [[nd jo yySuop

9yel $5900ns 3senbar [nd 3sed

9poo Jo saury 3| Iod SUOTIASSE JO #
9poo jo saury 3| Jod saurf 1599 JO #

sysonbar [[nd uado jo #

SYIUOW JJIY]) SB[Y}
Ul SIOQUISW WEd) 910D JANOE JO #

ouysok (10JeISe)UT puE J0INQIIUOD JWES

sysonbar [[nd snoraaid jo #
uoneriyje Joyeidayur
uoneIIJe 10JNqLIU0d

asuodsox
JSIIj S, JOMITAQI 9U) O} UOINBAID

syuedronaed-wnu

e)Suo[~uonduosop

$01S14210D4DY) 1SanbIY [Ing

@)1 ~00ns-I9)sonbar

eo0y 1od-s1Ias58
eo0[y ~1od-soul[1s9)
ewnu-1d-uodo

@JZIS"Wed)

SOUSLIAIIDIDY) 122[04]

Jasn-oures

esbarpnd-aaxd
uoneryiye-oul

eUOTBI[IJJE ~qIIUOD

ou/sak (SISIX3 ey #,,

ouysak (3nq e sox1y

suonnqruod jsenbar [nd [eUINX? JO 9,

9poo Jo saur] I Jod sased 159) Jo #

s10jeI3aIul

QATIOR JSOUI 0M]) JO AJTATIOR)SA)[

uoneard jsonbax

1nd 03 309fo1d woIy sypuowr jo #

QP02 JO SAUI[9[qBINIAXD

qum uoneaId jsenbai [[nd Je s19MO[[OF JO #

SYIUOW 1Y) JSE]) UT YIIM pIjor
-IQJUT SIOQUISW WD) JO UONORI)

ou/sak (101eI39)U1/10INQLIIUOD UONBI[IJJE JWes

Q[eWwoJ 10 ofew [Iopuad

ey ysey
ox1j-3nq

eSqLnuod \ﬂ&ﬁu@a&@\ouom

©00[“1od~sas857159)
e LJI[Iqe[TRAR ~10JRISAUT
e33e7)00(01d

©90[$

©SIOMO][0F

e)Suans L1008
UONEI[IJJeoues

©10pUaS-qIIIUOd

jsenbar ind woiy soynurw Jo # own-asuodsorisiy ouy/sak jIoquiour 2100 ©10qUISW 210D

109f01d & ur smaraa1 snoraaid Jo # wnu-marAar-Jorid ou/sak ¢1senbax [nd 3811y e1d-)sany
$91S1123000Y) d2d0jada(]

uonduosaq 10108, uonduosaq 10108,

QIO uo Aouayey Jsanbai [nd aouanfjur 0) umouy s10)oeJ Y} Jo ISI] dAIsudyeIdwo) | a|qer

pringer

A's

Page 9 0f 38 126

Empir Software Eng (2022) 27: 126

owmn
uodo 0) paredwos pagueyoown
9SO[O 1B 9pOD JO SAUI| PIPPE JO #
o uado

0]} paredwod pagueyo/owiny ISO[O
Je payono} So[Ij UO SHWWOD JO #
own

uodo 0) paredwos pagueyoown
9SO[d 1B payYono) Sy Jo #
o uado 01 paredwod
pasueyo/owr) 9SO[d e (PAI[OP
+ poppe) poSueyd soul] JO #
o uado 03 paredwod
Ppasueyo/awr) 9SO[O Je SHUIWO0D JO #

ouysak ¢passed sprinq 1D 18
ou/sak (SISIX9 581 .. @,,
SJUSUITIOD JO #

ou/sak ;AepLi & uo paprwqns jsonbar [ind

¥o3ueyo/0s0[d “UONIpPpEL-UINYD

*23uByd/350[d

~payono~sa[Iy ~UO0~S)IUWOD

¥93ury/9s0[d ~paguryd-sa[ly

¥aSuBYo/250[d ~UINYDI~IIS

*9ZurYD/3S0[0 ~SHUILIOd WNU

passed1s9)710
Serje
SIUSUIIIOd WNU

©)00]Jo"ABpLI}

Qwin uado jsonbar
[nd 38 9pod JO Ssaul] pappe JO #

Quiny uado jsonbai [nd
Je Payono] SI[Ij UO SIWWOD JO #

aun uado 3senbax [nd 38 payono) so[1y Jo #

owm uado jsenbar [[nd je (payo[ep
+ poppe) poSueyd soul] JO #

own uado jsonbar [[nd je syrwwoo jo #

ou/sak [SIUSUILLIOD U SISIXQ JOI[JUOD,, PIOMADY

SJUSWIWIOD 9POD §,JOINQLIIUOD JO #
SJUSWIWOD I0INQLIUOD JO #

ou/sok jjuawwod e sey 3senbar [[nd
ouysak ;pauadoar st 3sonbar [[nd

aun
sty plng [D IsIy Sy 0} uope

exuado ~uonIppe-wInyo

exuado ~payonoy~sa[Iy ~UO”SHWWOD

exuado ~pagueyo-soqiy

exuado ~wInyo-oIs

exuodo ~syruwos wnu

PIJuod- juawod
UOI™SHUWWOI ~9pOod~wnu
UO0J ~sjuauruIod-wnu
sjuauIuIod”sey

jou—10-uadoar

SJUSWWOD 3P0 JO # SIUSUWIOD ~9POd~Wnu -a10 jsanbai [nd woiy seynurw Jo # Kouajer o
SIUSUITIOD JTUIOD
pue isonbar [[nd ur syuedronaed jo # 9poo-wnu-jred ou/sak (1D sosn ©5)SIX710
uondrosaq 1008 uondrosaq 10108
(ponunuoo) | a|qe}

pringer

A's

Empir Software Eng (2022) 27: 126

126 Page 10 of 38

192[0.4d v U1 $21714130D JUAUdO]2A2P fO SYIUOW 22.4Y] SNO1A2L 2Y] SUISN PAUNSDIUL 24D (WD) 240D “8°2) Ud1] AIAO dSUDYD IDY] SL0I1ID]

192l04d v u1 1s2nbat JInd paouaiafo. v 01 2a1V]aL 24D SILIIUL [

jsanbai [[nd e SuneaId uaym 9sUuS AYBW ASOY) AIE @ St PIYIBW SI0JOR]
*(eso[o pue uorssruqns jsonbai [nd) sjoysdeus JUSISIJIP 0M] J8 SON[EA JIY) JO9[00 9M dIOH "SS001d moradr oy} Surnp a5ueyd ued Jey) SI0J0e] JIWRUAD Ie * Se POYIEW SI0JOR.]

ou/sok jowr
uado 03 paredwos pagueyoown
9S0[0 Je Junsixa Ased 159)

owmn
uado 03 paredwos pagueyoown
9SO[0 Je (PA[pP + pappe)
paSueyo opod 1s9) JO soul JO #

own
uado 03 paredwos pagueyoown
9SO[0 I8 9p0Od JO Soul| PAJI[op JO #

¥03UBYD/9S0[O ~UOISN[OUIISI)

*08uBYD/250[0 ~UINYDISI)

*28uBYd/950[0 ~UONI[AP UINYD

ou/sok ¢own uado
jsonbar [ind je Sunsixe ased 1s9)

i uado
jsonbar [nd e (paro[ep + peppe)
paSueyo 9pod 1s9) JO soul] JO #

Quiny uado jsenbax
[nd 38 9pod Jo sauI] PAIR[AP JO #

exuado “uorsn[our)s9)

exuodo “uImyoTisa)

exuado ~uoneepuINYd

uonduosaq

10108,

uondrsaq

10108,]

(ponunuoo) | 3jqer

pringer

A's

Empir Software Eng (2022) 27: 126 Page 11 0f38 126

we can determine whether the importance of these dynamic factors changes under different
snapshots (pull request submission and close) during the whole lifetime of the pull request.

The final dataset offers a total of 3,347,937 pull requests from 11,230 projects. The
diversity of the dataset is reflected in 6 programming languages, different projects sizes and
different project activities (Zhang et al. 2021).

3.3 Data Preprocessing (DP)

There are mainly two parts for data preprocessing, i.e. unreliable data removal (DP.1) and
special factor discovery (DP.2).

3.3.1 Unreliable Data Removal (DP.1)

There are some unexpected values for factors, including first_response_time, ci_latency and
project_age. We need to fix the problem for future reliable analysis. Detailed reasoning for
the unexpected problems can be seen in our technical report (Zhang et al. 2020b).

— first_response_time has negative values since our metric considers the comments under
the related code, and some comments exist before pull request creation (0.4% pull
requests have negative values).

— ci_latency has negative values when commits exist before pull request creation, and the
time of the first CI build is earlier than the creation time of a pull request (1.5%).

— project_age has negative values where the creation time of a user account on GHTorrent
is different from that on Github API (0.1%).

— We also remove bug_fix, which has 99.3% empty values, to avoid its impact on further
analysis. Empty values represent the pull requests or their related issues that do not have
tags determining whether the pull request is a bug fix according to Fan et al.’s method
(2017).

After removing the above-unexpected values, to further verify the validity of the
remaining data, we calculated the accuracy of the 100 selected pull requests by random sam-
pling of the time-related factors, respectively. The accuracy of factors first_response_time,
account_creation_days, project_age, ci_latency in the subset of randomly selected samples
are 98%, 97%, 96%, and 94%, respectively. Relative to the size of our dataset, unexpected
values represent only a small fraction. Since it is difficult to avoid the problem caused by
the inconsistency between GHTorrent and GitHub APIs, we have added the issue to Threats
to Validity (Section 7) with a corresponding description.

3.3.2 Special Factor Discovery (DP.2)

Some factors would not make sense unless a precondition were met (see Table 2). For
example, factor ci_latency only make sense when ci_exists was true. Therefore, ci_exists
presents a precondition contingent on which ci_latency is meaningful, also referred to as a
postconditional factor. Other factors which have no dependencies will not be affected by
conditions.

— first_response_time, it only make sense when there exists comment (has_comments=1).

— ci_test_passed and ci_latency depend on the existence of CI tools (ci_exists=1).

— same_dffiliation, it only makes sense when the contributor and integrator are different
persons (same_user=0).

@ Springer

126 Page 12 of 38 Empir Software Eng (2022) 27: 126

Table2 Factors with dependency

postconditional factor preconditional factor
first_response_time has_comments
ci_test_passed -

) ci_exists
ci_latency
same_affiliation same_user

Some pull request related factors are related to the review process and can change from
the creation time to the close time of pull request (see Table 3). To comprehensively under-
stand factors’ influence on pull request latency, we consider these factors when submitting
(opening) and closing a pull request separately.

3.4 Statistical Modeling (SM)

To analyze the influence of factors on pull request latency, we first discover the relationship
between factors and solve the collinearity and multicollinearity problems (see SM.1 and
SM.2 in Fig. 2).* Then we transform the data for further interpretation (SM.3). Finally, we
build models in different scenarios (SM.4) and models within different contexts (SM.5).

3.4.1 Discover Factor Relationship

To ensure the reliability for the building of further analysis models, we removed the
collinearity and multicollinearity problems via two steps.

Collinearity removal (SM.1) We first calculated the correlations among all the factors. For
continuous factors, we used the Spearman correlation coefficient (p) (Gousios et al. 2014)
and marked p > (.7 as a strong correlation (Gousios et al. 2014). For categorical factors,
we used Cramér’s V value (®.)°, where @, > \/%6 was considered as a strong correlation
(Cohen 1969). For the correlation between continuous and categorical factors, we used the
partial Eta-squared value (nz) (Jones 2019) and marked 772 > (.14 as a strong correlation
(Cohen 1969). The heatmap of correlation results can be seen in the technical report.” Then
we extracted the strongly correlated factors and created strong correlation networks, which
are also shown in the technical report.

After calculating factor correlation, we removed the strongly correlated factors by keep-
ing popular factors while removing factors strongly correlated with many others. The
reasons are as follows:

— Our objective was to keep as many factors as possible to enrich our model and make
the study more meaningful. Therefore, for strongly correlated factors, we remove the
one with the biggest number of strong correlations with other factors.

— Among the strongly correlated factors, we keep the factors that are more discussed in
related work. Since the goal of our study is to uncover the relative importance of factors,
it is more valuable and instructive to consider popular factors for research purposes.

“https://quantifyinghealth.com/correlation-collinearity- multicollinearity/
Shttps://www.statstest.com/cramers-v-2/

Shttp://www.real-statistics.com/chi- square-and- f-distributions/effect- size- chi-square/
7https://github.com/zhangxunhui/ESE_pull_request_latency

@ Springer

https://quantifyinghealth-com-s.libyc.nudt.edu.cn:443/correlation-collinearity-multicollinearity/
https://www-statstest-com-s.libyc.nudt.edu.cn:443/cramers-v-2/
http://www.real-statistics.com.libyc.nudt.edu.cn:80/chi-square-and-f-distributions/effect-size-chi-square/
https://github-com-s.libyc.nudt.edu.cn:443/zhangxunhui/ESE_pull_request_latency

Empir Software Eng (2022) 27: 126 Page 130f38 126

Table 3 List of dynamic factors
factor name split by process

churn_addition churn_addition_open
churn_addition_close

churn_deletion churn_deletion_open
churn_deletion_open

commits_on_files_touched commits_on_files_touched_open
commits_on_files_touched_close

files_changed files_changed_open
files_changed_close

num_commits num-_commits_open
num-commits_close

src_churn src_churn_open
src_churn_close

test_churn test_churn_open
test_churn_close

test_inclusion test_inclusion_open
test_inclusion_close

The description of the workflow® and the code® are open source.

Multicollinearity removal (SM.2) For the multicollinearity problem, we excluded factors
with variance inflation factor (VIF) values > 5, as such values could inflate variance, mea-
sured using the vif function of the car package in R (Cohen et al. 2013). In this way, we
removed num_comments.

The factors removed in different cases are shown in Table 4. For RQ2, we consider
meaningful factors in all the corresponding contexts, so we need to take the intersection of
response cases. For example, we consider factors in both the submission and close states
for the process context, so factors such as has_comments and num_code_comments are not
considered.

3.4.2 Ease of Interpretation (SM.3)

We stabilize the variance in features log-transforming continuous variables after adding
“0.5” (continuous factors) (Hall 2009). Then we transformed the features into a comparable
scale with a mean value of “0” and a standard deviation of “1”.

3.4.3 Factors’ Influence on Pull Request Latency

To explain the influence on pull request latency of all the factors, we need to consider
that different factors only make sense in different situations (e.g., factor ci_latency only
makes sense when a pull request uses CI tools). Figure 3 presents all the situations of model
construction in this paper, where situation I-V are used to explain factors’ influence. In

8https://github.com/zhangxunhui/ESE_pull_request_latency/blob/main/report.pdf
9https://github.com/zhangxunhui/ESE_pull_request_latency/blob/main/ese_latency _factor_selection.py

@ Springer

https://github-com-s.libyc.nudt.edu.cn:443/zhangxunhui/ESE_pull_request_latency/blob/main/report.pdf
https://github-com-s.libyc.nudt.edu.cn:443/zhangxunhui/ESE_pull_request_latency/blob/main/ese_latency_factor_selection.py

126 Page 14 of 38 Empir Software Eng (2022) 27: 126

Table 4 The removal of strongly correlated factors

Submission Close has_comments=1 ci_exists=1 same_user=0

first_pr
perc_external_contribs
test_cases_per_kloc
test_lines_per_kloc
contrib_affiliation
social_strength
requester_succ_rate

churn_deletion

B S S e T e
— =+ = =k = =k = =k —f

churn_addition
asserts_per_loc
comment_conflict
part_num_code
num-_code_comments_con
num-comments_con
inte_affiliation

num_participants

B T ST S S e e s

at_tag

B T T e S e N e e e N
R T e e e e S S S S A

R e e T S

num-_comments

has_comments

ES

ci_exists e
same_user
first_response_time 1 { t

ci_latency 1 { 1

e

ci_test_passed 1 { 1

Tmarks the factors removed for collinearity problem
*marks the factors removed for multicollinearity problem
fmarks the postconditions for special cases

#marks the preconditions for special cases

these situations, we include as many factors and relevant pull requests as possible to explore
which of all potential factors are more important in different cases.

I Pull requests at submission time. We can learn how factors that can be measured at the
pull request submission time influence latency in this situation. Here, factors marked
by e (see Table 1) are included when building up the model.

Ii Pull requests at close time. Comparing to situation I, factors merged during review
process (e.g., has_comments) are included. Both close time and submission time are
just snapshots of the entire lifetime of pull requests, which can help us understand the
impact of different factors on pull request latency throughout the lifetime.

IIT Pull requests with comments (has_comments=1). The first response latency of a pull
request (first_response_time) only makes sense when there exists comment.

IV Pull requests using CI tools (ci_exists=1). The latency of CI builds (ci_latency) and the
build results (ci_test_passed) only make sense when pull requests use CI tools.

@ Springer

Empir Software Eng (2022) 27: 126 Page 150f38 126

create time create time create time YL time
- 2018.6- 2016.6-2018.6 -2016.6)
||
[open j
A team size team size team size V_IL ‘ roiect
large mid small pro)
% m VIII 3
' § XI has comment nocomment - - - ---—-==-= » pullrequest
3 ‘ first_response_t : ; /
\ ' ‘ ime ;
v IX - b
v [CI exists I no CI } ——————————— > tool
: ci_latency \ /
[close }‘< ‘ ci_test passed ‘
! N diff X0 k
[same user I itferent } ——————————— > developer :
N users . ;

i same_affiliation |

Fig. 3 Various situations of model construction

IV Pull requests submitted and integrated by different users (same_user=0). Whether
contributor and integrator of a pull request are affiliated to the same organization
(same_affiliation) only makes sense when this pull request is submitted and integrated
by different people.

3.4.4 Influence Change Within Different Contexts

To explore the relevance of context in explaining pull request latency, we studied six sce-
narios (see context VI-XI in Fig. 3). Context VI-X inherit from our previous study (Zhang
et al. 2021). We use the same set of factors in each context but different pull requests to
build our model for studying change of factor’s importance.

VI Time context: the period before June 1st, 2016, June 1st, 2016 and June 1st, 2018,

and the period after June 1st, 2018.
VII Project context: team size small (team_size < 4), medium (4 < team_size < 10),
and large (team_size > 10).
VIII Pull request context: has_comments=1 and has_comments=0.
IX Tool context: ci_exists=1 and ci_exists=0.
X Developer characteristic: same_user=1 and same_user=0.

XI Process context. We select the dynamic factors that can change during the review
process (refer to factors marked by = in Table 1). We study whether the importance of
these factors changes after the review process. We can understand whether the impact
of factors changes under different snapshots in the pull request lifetime through this
context. It is also possible to understand the effect of pull request modifications on
pull request latency during the review process.

@ Springer

126 Page 16 of 38 Empir Software Eng (2022) 27: 126

3.5 Model Interpretation

The resulting mixed-effect linear regression models explain the influence of factors
in models and their relative relevance. Section 4 presents the findings from these
mixed-effect linear regression models. We report the regression coefficients together
with their p-values. The term p-value indicates the statistical significance of a factor,
which was indicated by asterisks: ***p < 0.001;** p < 0.01;*p < 0.05. Mean-
while, we present the explained variance of each factor derived from ANOVA type-II
analysis (Langsrud 2003). Finally, the percentage of explained variance (calculated by
explained variance/total amount of variance) was used as a proxy for the relative
importance of a factor (Overney et al. 2020). For the goodness of fit of each model, we
report both marginal and conditional R? (Nakagawa and Schielzeth 2013), which considers
the variance of the fixed effects and both fixed and random effects, respectively.

4 Results

In this section, we first present how factors influence pull request latency (answering RQ1).
It includes models for pull requests at open time, pull requests at close time, pull requests
with comments, pull requests using CI tools, and pull requests submitted and integrated by
different users (see Section 3.4.3). After that, we present how factors influence pull request
latency change with context change (answering RQ2), consisting of models for six contexts,
namely time, project, pull request, tool, developer, and process contexts (see Section 3.4.4).

4.1 RQ1: How do Factors Influence Pull Request Latency?
4.1.1 Open Time

Columns 2 and 3 in Table 10 show the influence of factors at pull request open time,
where description_length (row 2), src_churn_open (row 3), prev_pullreqs (row 4), integra-
tor_availability (row 5) and open_pr_num (row 6) are the top 5 important factors. They
together explain 88.7% of the total variance and are all significantly important regarding the
latency of pull requests.

Among all the factors, the length of pull request description (description_length) con-
tributes the most to the latency of pull request (46.3% variance), which positively correlates
with the latency. The pull request text description’s length may indicate the pull request’s
complexity, and it is likely that more complex or challenging to understand pull requests
take longer to review.

The amount of source code change (src_churn_open) ranks the second (20.4% variance),
which is also positively correlated with pull request latency. One possible explanation is that
the amount of source code changed affects the amount of time the maintainer has to check
the correctness of the software.

In addition to these technical factors, the contributor’s experience (prev_pullreqgs) also
has a sizable effect, which explains 8.9% variance and negatively correlates with the latency
of pull requests. Comparing to other developer characteristics, the contributor’s experience
in the target project is more decisive regerding the latency at pull request open time.

@ Springer

Empir Software Eng (2022) 27: 126 Page 17 of 38 126

For project characteristics, the integrator_availability and open_pr_num have sizable
effects, explaining 6.7% and 6.5% variance, respectively. These results indicate that the top
active reviewers and workload of projects influence the latency of pull requests, increasing
the latency with the increase of description length.

When submitting a pull request, both social and technical factors (pull
request, developer, and project characteristics) influence the latency
of pull request with sizable effects, among which the length of pull
request description and the size of the source code change are the most
influential.

4.1.2 Close Time

Columns 4 and 5 in Table 10 present the influence of factors at pull request close time,
among which has_comments (row 21), same_user (row 22), description_length (row 2),
num_code_comments (row 23) and num_commits_close (row 14) are the top 5 important
factors, explaining 80.8% of the total variance and are all significantly important.

Factor has_comments ranks the first in explaining pull request latency (37.5% variance)
with a positive correlation. Communication between reviewers and the contributor may indi-
cate that reviewers ask for changes or ask the contributor relevant questions to understand
the contribution content.

For factor same_user, it explains 16.9% of the total variance with a positive correlation.
It indicates that when the contributor and integrator are not the same (same_user=0), the
latency of a pull request is more likely to increase compared to the situation when the
contributor and integrator are the same. A possible explanation is that when reviewing pull
requests submitted by other people, reviewers need to spend more time making the final
decision.

Among all the factors, num_code_comments has sizable positive effect, which explains
8.4% of the total variance. This indicates that the presence or absence of comments on
the code during the review process has a moderate correlation with pull request latency.
Moreover, comments on the code increase the decision time.

For the length of pull request description, its importance ranks the 3rd to explain pull
request at close time (12.3% variance). It still has a sizable impact in increasing pull request
latency even comparing with factors that occurred during the review process.

We see that factor num_commits_close has a sizable positive effect by explaining 5.7%
of the total variance. This indicates that the number of commits in the pull request
has a moderate impact on the pull request latency, as seen in the snapshot of the pull
request closing. In Session 4.2.6, we will examine how the same factors differ in the
interpretation of pull request latency in the two contexts of pull request submission and
closing.

From an overall perspective, the close time model fits better than the submission model
according to the R-square values. The result is likely to be related to adding factors that
occurred during the review process (e.g., has_comments) and the change of dynamic factors
(e.g., num_commits).

@ Springer

126 Page 18 of 38 Empir Software Eng (2022) 27: 126

When closing a pull request, factors that occurred during the review
process (e.g., has_.comments) have a significant impact on the latency
of pull request, which weakens the effect of factors measured at pull
request submission time. Meanwhile, the overall fitness of the model
becomes better by adding the factors that occurred during the review
process.

4.1.3 Pull Requests With Comments

Columns 6 and 7 in Table 10 present the influence of factors when pull requests have com-
ments (has_comments=1), where first_response_time (row 28), num_comments (row 29),
num_code_comments (row 23), hash_tag (row 24) and prev_pullregs (row 4) rank the top 5,
explaining 95.4% of the total variance.

Among all the factors, we can see that the latency is highly dependent on the comments
during the review process, where the importance of first_response_time, num_comments and
num_code_comments ranks the 1st, 2nd and 3rd, explaining 58.7%, 31.4% and 2.6% vari-
ance respectively. However, for factor hash_tag and prev_pullreqs, which ranks the 4th and
5th, explaining only 1.8% and 0.9% variance respectively.

When there exist comments in pull requests, comment-related factors
during the review process play a decisive role in the latency of pull
requests. The latency of the first reviewer’s response is the most im-
portant.

4.1.4 Pull Requests Using Cl Tools

Columns 8 and 9 in Table 10 show the results of factors’ influence on pull request latency
when pull requests use CI tools. The top 5 important factors are has_comments (row 21),
ci_latency (row 30), ci_test_passed (row 31), num_code_comments (row 23) and same_user
(row 22), with 64.7% variance explained in total. All of the five factors are factors that
occurred during the review process. For factors that can be measured at the opening time of
pull request, they also have a sizable effect although not ranking in the top 5. For example,
description_length (row 2) and integrator_availability (row 5), they explain 6.1% and 4.6%
of the total variance respectively.

Factors ci_latency and ci_test_passed explain 18.2% and 10.4% of the total variance,
respectively, which indicate that for pull requests using CI tools, the time used for making
decisions is moderately relevant to the build time and build outcome of CI tools. For the
influence direction, pull requests that need longer CI builds are more likely to take more
time for review. Further, pull requests which passed the CI builds are more likely to be
handled in a shorter time.

For other situations except for ci_exists=1 in Table 10, we can see that pull requests using
CI tools are likely to take more time to be handled (row 8).

@ Springer

Empir Software Eng (2022) 27: 126 Page 19 0f 38 126

When pull requests use CI tools, both factors that occurred during the
review process (e.g., has_.comments) and factors that can be measured
at pull request submission time (e.g., description_length) have a sizable
effect on pull request latency. Meanwhile, we find that the usage of CI
tools slows down the processing of pull requests.

4.1.5 Pull Requests Submitted and Integrated by Different People

Columns 10 and 11 in Table 10 present the influence of factors on pull request latency
when pull requests are submitted and integrated by different people. Among all the factors,
has_comments (row 21), num_code_comments (row 23), description_length (row 2), integra-
tor_availability (row 5) and num_commits_close (row 14) rank the top 5, explaining 70.1%
of the total variance.

Factor has_comments stands out, which explains 33.9% variance and is much higher
than all the other factors. A possible explanation is that when the contributor and integrator
are not the same, the review process highly depends on communication, which helps the
reviewers understand the contribution and make the final decision.

When pull requests are submitted and integrated by different people,
comments under a pull request play the most important role in influ-
encing pull request latency. This reflects that pull request reviewers rely
on communicating with contributors through comments for the stan-
dardised pull-based development, which is likely to bring time costs to
the review process.

4.2 RQ2: Do the Factors Influencing Pull Request Latency Change with a Change in
Context?

4.2.1 Time Context

Columns 2-7 of Table 11 present the results of comparison among pull requests in different
time contexts. Among all the factors, the variance explained by factor has_comments (row
2) and project_age (row 20) change more than 5%.

For factor project_age, its explained variance increases directly from 0.1% to 26.2%
as projects evolve, with negative influence on pull request latency. Since the project age
can reflect the project maturity to some extent, this result indicates that project maturity is
increasingly important to distinguish the pull request latency as projects evolve. Meanwhile,
the more mature the project, the faster the review of the pull request will be.

For factor has_comments, the explained variance decreases from 43.1% to 27.9% as
projects evolve. It indicates that comment under a pull request cannot be a decisive factor in
measuring its latency as the project evolves. We calculated the percentage of pull requests
with comments for each period and found that the ratio decreases as projects evolve (62.7%
for the period before 1st June, 2016; 61.3% for the period between 1st June, 2016-1st June,
2018; 57.7% for the period after 1st June, 2018). However, the percentage of pull requests
using CI tools increases as projects evolve (65.7% for the period before 1st June, 2016;

@ Springer

126 Page 20 of 38 Empir Software Eng (2022) 27: 126

83.9% for the period between 1st June, 2016-1st June, 2018; 86.0% for the period after
Ist June, 2018). CI tools are likely replacing the manual review process as projects evolve,
leading to decreased importance of comments.

As the project evolves, the maturity of the project becomes more and
more important for determining pull request latency, while the com-
ment existence no longer plays a decisive role.

4.2.2 Project Context

Columns 2-7 of Table 12 present the results of comparison among projects with different
team sizes when submitting pull requests. Among all the factors, the variance explained by
factor num_code_comments (row 7) and same_user (row 3) change more than 5%.

For factor num_code_comments, the explained variance increases from 4.2% to 15.8%
with the increase of team size. We calculate the median value of project workload
(open_pr_num) with different team sizes and find that the workload increases a lot with the
team size (small: 6, mid: 13, large: 77). Therefore, it is likely that the increased workload
distracts the reviewers, so if code comments exist, it may take longer to wait for the changes
to be reviewed again.

For factor same_user, its explained variance decreases from 21.7% to 10.5% with the
increase of team size. It is likely that due to the standardization of the pull-based develop-
ment process, pull requests need to be reviewed by others. We calculated the ratio of pull
requests submitted and integrated by the same user for different team sizes (small: 45.3%,
mid: 44.1%, large: 40.5%). It is likely that the decrease of pull requests submitted and inte-
grated by the same user lead to the decline in importance in explaining the pull request
latency.

As the team size of projects become larger, the discussion under pull
request code snippets becomes more and more important for explaining
pull request latency, while the relationship between contributor and
integrator becomes less important.

4.2.3 Pull Request Context

Columns 8-11 of Table 11 present the comparison results between pull requests with
and without comments. Among all the factors, same_user (row 2), num_commits (row 6),
src_churn (row 8) and prev_pullreqs (row 14) are outstanding, with explained variance
change more than 5%.

For factor same_user, the explained variance increases from 8.8% (has_comments=true)
to 50.8% (has_comments=false), which indicates that when there does not exist comment,
whether submitted and integrated by the same user, plays a decisive role in the latency
of pull request. Statistically, we calculated the latency (in minutes) of pull requests in
different situations (see Table 5). It is clear to see that although the median latency of
has_comments=false situation is much smaller than has_comments=true situation, the dis-
crimination for same_user is much stronger when no comment exists (with more than 10

@ Springer

Empir Software Eng (2022) 27: 126 Page 21 0f38 126

Table 5 Pull request median

latency (in minutes) for has_comments=true has_comments=false
has_comments and same _user
cross situations same_user=true 1,348 30

same_user=false 2,881 311

times difference in pull request median latency). This indicates that contributors can eas-
ily decide according to the project standard by themselves. In contrast, for others, it takes
some time to complete the review and make the final decision, even though no need to
communicate with the contributor.

For factor num_commits, the explained variance decreases from 28.1%
(has_comments=true) to 5.9% (has_comments=false). A possible explanation is that when
there exist comments, it is likely that the pull request needs to be modified to meet project
standards. Thus its latency is highly dependent on the code changes during the review
process.

Likewise, for factor src_churn, it is directly related to the code change during review
process. Therefore, its explained variance decreases from 14.6% (has_comments=true) to
3.2% (has_comments=false).

For factor prev_pullreqs, the explained variance decreases from 8.2%
(has_comments=true) to 0.1% (has_comments=false). It is likely that when there exist
comments, experienced contributors can modify their contributions easier and faster than
the non-experienced.

Comparing to pull requests without comments, when there exists com-
munication between the contributor and reviewers, the size of the con-
tribution and the contributor’s experience become more important in
determining the latency of pull requests. Without communication, the
relation between contributor and integrator plays a decisive role in pull
request latency.

4.2.4 Tool Context

Columns 8-11 of Table 12 present the results of comparison between pull requests using CI
tools and not using CI tools. Among all the factors, only same_user (row 3) has more than
5% change of explained variance, which increases from 14.1% (ci_exists=true) to 25.3%
(ci_exists=false). Likewise, we calculate the latency (in minutes) in different situations (see
Table 6). We can see from the result that using CI tools increases the latency of pull requests
in an overall perspective. Contributors likely need to spend more time on modifying con-
tributions to meet project standards. When not using CI tools, the latency of pull request
is easier to distinguish using factor same_user (with more than 18 times difference in pull
request median latency). A possible explanation is that pull request decisions can be made
quickly for developers with merge access due to the lack of automatic feedback from CI
tools. However, it takes relatively long for other people’s contributions to be reviewed.

The use of CI tools increases the overall latency of pull requests. The
latency differs significantly for pull requests that do not use CI tools,
considering the relationship between the submitter and the integrator.

@ Springer

126 Page 22 of 38 Empir Software Eng (2022) 27: 126

Table 6 Pull request median
latency (in minutes) for ci_exists cl_exists=true ci-exists=false
and same_user cross situations

same_user=true 310 51
same_user=false 1,461 926

4.2.5 Developer Context

Columns 8-11 of Table 13 present the results of pull requests within different devel-
oper contexts (whether contributor and integrator are the same). Among all the factors,
has_comments (row 21), description_length (row 2), integrator_availability (row 5) and
open_pr_num (row 6) are outstanding, with explained variance change of more than 5%
across different contexts.

For factor has_comments, the explained variance decreases from 50.3%
(same _user=true) to 33.8% (same_user=false). According to Table 5, factor has_comments
is more distinguishable for pull request latency when same_user=true. For factor descrip-
tion_length, the explained variance decreases from 17.6% (same_user=true) to 9.1%
(same_user=false). Through the data statistics, we found that the description information
was generally long for cases with different integrators and contributors (same_user=true
median: 19, same_user=false median: 26). This illustrates that while self-integrated pull
request description messages are generally shorter and in this case, it is easier to explain
the latency of the pull request by the length of description.

For factor integrator_availability, the explained variance increases from 2.1%
(same_user=true) to 8.8% (same_user=false). The result may be explained by the fact that
only pull request reviewed by others highly depends on the availability of other integrators.
Likewise, the workload (open_pr_num) of projects only have a sizable effect on the latency
of pull request submitted and integrated by different people.

If the contributor and integrator are the same, pull request latency
depends on the communication between the contributor and reviewers
and the length of the pull request description. When the contributor
and integrator are different, pull request latency depends on the project
workload and availability of active integrators.

4.2.6 Process Context

Columns 2-5 of Table 13 present the results of comparison for pull requests at submission
time and close time. We study whether the dynamic factors perform differently regarding
pull request latency (column 2-5) and whether the change of these factors influences the
latency of pull requests (column 6-7).

Among all the factors, the explained variance of description_length decreases from
46.3% (open time) to 36.5% (close time). It indicates that the description length becomes
less important in determining the latency of pull requests as the review process evolves.
During the review process, pull requests can be modified, which may be the reason for the
importance increase of factor num_commits (0.3% at submission time, 22.8% at close time).
To verify the explanation, we built another model (process change) by replacing factor
num_commits with its change during the review process (num_commit_change), and found

@ Springer

Empir Software Eng (2022) 27: 126 Page 23 0f 38 126

that the change of commits is significantly important for pull request latency with a sizable
effect (row 14, columns 6 and 7; 34.5% variance).

Surprisingly, we find that the explained variance of factor src_churn decreases (20.4%
at submission time, 11.1% at close time). A possible explanation is that the change in the
number of commits indicates the change in time compared to the change in lines of source
code, which in turn can better explain the time consumption of the pull request review
process.

The model fits better at the close time than the submission time. Meanwhile, we find that
if we replace the dynamic factors with the amount of variation during the review process,
the model fits better. It indicates that the factors explain the pull request latency better for
snapshots that are closer to the merge/reject state. Also, the change of factors during the
review process has a significant impact on pull request latency.

For dynamic factors that can change during the review process, the
number of commits significantly influences the latency of pull requests.
As pull requests approach the merge/reject state, the factors become
more explanatory of the pull request delay.

5 Case Study

We found that bots are widely used in the pull-based development model (Wessel et al.
2018). As an essential support mechanism, we explore the impact of bot participation on
pull request latency.

5.1 Bot Recognition

There exists a lot of bot identification methods, including identifying based on user name
(Wessel et al. 2018), commit information (Dey et al. 2020; Golzadeh et al. 2021), com-
ment information (Cassee et al. 2021; Golzadeh et al. 2021). Golzadeh et al. (2021) created
the tool “BoDeGHa” to identify bots using the comments of pull requests and issues in
a repository, and the F1 value reached 0.98. In this paper, we use this method for bot
identification.

We have made some modifications to the tool. We removed the extraction process of the
pull request and issue comments from BoDeGHa, and instead got all the historical comment
information (not limited to a particular repository) of each pull request-related commenter
from the GHTorrent dataset. By increasing the number of comments in the prediction, we
can break the limitation of “minimal number of non-empty comments” in BoDeGHa and
identify more users. At the same time, the increase of users’ comment information can
theoretically improve prediction accuracy. The comments are then fed into BoDeGHa’s
prediction model to classify the reviewers. For the pull requests containing comment infor-
mation in our dataset, 154,278 reviewers were successfully classified using BoDeGHa.
2,551 of them were bots (1.7%). After removing the pull requests containing unsuccess-
fully classified reviewers (reviewers identified as “unknown” by BoDeGHa), 33.8% have
bot comments among all the commented pull requests.

Based on the recognition of the reviewer, we add four new factors, i.e., whether
there exists human comment (has_human_comments), whether there exists bot comment

@ Springer

126 Page 24 of 38 Empir Software Eng (2022) 27: 126

(has_bot_comments), the number of human comments (num_human_comments), the number
of bot comments (num_bot_comments).

5.2 Influence of Bot Comments on Pull Request Latency

We constructed two mixed-effect linear regression models for the effects of bot reviews.
The results are shown in Table 7.

Table 7 Results for bot-related factors in influencing pull request latency

1 () 3) 4) (5)
has_bot/human_comments num_bot/human_comments
Coeffs (Err.) Sum sq Coeffs (Err.) Sum sq

(1) (Intercept) -0.66(0.01) *** - -0.02(0.01) *** -
(2) first_response_time 0.49(0.00) *** 158504.90 *** (0.47(0.00) *** 157003.22 ***
(3) followers 0.00(0.00) *** 7.80 **#% -0.01(0.00) *** 141.70 H**
(4) prev_pullregs -0.11(0.00) *** 4059.50 *** -0.08(0.00) *** 2082.64 H#*
(5) integrator_availability 0.04(0.00) #** 1272.83 *** 0.04(0.00) *** 1274.51 #**
(6) open_pr_num 0.14(0.00) *** 1981.48 *** (.14(0.00) *** 2045.94 k=
(7) project_age 0.02(0.00) *** 85.93 *** (0.03(0.00) *** 182.45
(8) team.size -0.04(0.00) *** 140.69 *** -0.03(0.00) *** 138.27
(9) description_length 0.08(0.00) *** 4817.24 *#** 0.05(0.00) *** 2155.81 ##*
(10) num-_code_comments 0.16(0.00) *** 17519.44 *** -0.06(0.00) *** 1502.88 #**
(11) commits_on_files_touched -0.03(0.00) *%** 631.82 *#*#* -0.04(0.00) *** 813.84 ##k
(12) files_changed 0.00(0.00) 0.44 -0.01(0.00) *** 23.24 Hwk
(13) num_commits 0.11(0.00) #** 6107.63 *#** 0.07(0.00) *** 2238.16 H**
(14) src_churn 0.08(0.00) 3 2887.80 *** 0.06(0.00) *** 1920.20 ***
(15) test_churn 0.01(0.00) 33.51 *#* 0.00(0.00) 0.34
(16) core_member -0.06(0.00) *** 32534 ##% .0.05(0.00) *** 287.70 k*
(17) ci-exists 0.03(0.00) *** 58.26 *** 0.03(0.00) *** 74.76 FwE
(18) friday_effect 0.06(0.00) *** 612.78 *** 0.06(0.00) *** 645.31 kE*
(19) hash_tag 0.20(0.00) *** 7520.40 *#**0.16(0.00) H** 4981.70 H**
(20) test_inclusion 0.00(0.00) 1.24 0.01(0.00) *** 18.55 ##*
(21) same_user 0.08(0.00) #** 939.90 *** 0.06(0.00) *** 582.59 k=
(22) contrib_gender 0.01(0.00) * 281 * 0.00(0.00) 0.48
(23) prior_review_num 0.00(0.00) ** 5.49 ** 0.00(0.00) *** 7.33 wekk
(24) sloc 0.01(0.00) *** 23.72 ##% 0.01(0.00) *** 17.63 %
(25) test_lines_per_kloc -0.01(0.00) *** 38.66 *** -0.01(0.00) *** 17.29 %%
(26) reopen_or_not 0.25(0.00) *** 1400.45 #*#* 0.12(0.00) *** 340.66 F**
(27) has_human_comments 0.42(0.00) *** 11421.56 *** -
(28) has_bot_comments 0.48(0.00) *** 21091.72 *** -
(29) num_human_comments - 0.36(0.00) *** 49984.60 ***
(30) num_bot_comments - 0.25(0.00) *** 26603.94 ***

nobs 1,170,192 1,170,192

R 0.40 0.46

R? 0.47 0.52

@ Springer

Empir Software Eng (2022) 27: 126 Page 250f38 126

From the table, we find that all four factors (has_human_comments, has_bot_comments,
num_human_comments, num_bot_comments) positively affect the pull request latency. This
indicates that no matter from humans or bots, as long as a pull request contains comments, it
is likely that the lifetime will be lengthened. We found by manual inspection that some bots
do not trigger when a pull request is submitted but automatically generate comments during
the review process.'?!! Some other bots may refer to many reviewers to review the pull
request, and subsequent manual review will lead to the long latency of the pull request.!?
Therefore, many reasons may cause the increase of pull request latency when bot comments
exist. For the goodness of fit, the model containing the number of comments fits better
(R3=0.52), which indicates that the number of reviews is more correlated with pull request
latency than whether it contains comments or not. Multiple reviews imply multiple revisions
and therefore have a stronger correlation with pull request latency. However, we also find
from the results that the effect size of has_bot_comments is larger than has_human_comments
when we consider whether or not to include the corresponding comments. However, when
we consider the number of comments, the effect size of num_bot_comments is smaller than
num_human_comments. One possible reason is that the bot’s comment directly points out the
problems in the pull request. The contributor makes code changes based on the comments.
The first comment is more critical since the bot’s comments are fixed.!> As for humans,
the focuses of comments may be different. Contributors may need to focus on different
modifications, thus leading to the number of human comments being more relevant to the
latency of pull requests.

6 Discussion

By studying the factors affecting pull request latency, we now have a deeper understanding
of the entire lifetime of pull requests. To better understand the impact of the review process
on pull request latency, we add dynamic factors to the data collection in the pull request sub-
mission and closure states compared to previous work. We analyze the impact of factors on
pull request latency in different situations and contexts with a more comprehensive dataset.

6.1 Interpretation

RQ1 How do factors influence pull request latency? The impact of factors on pull request
latency cannot be simply summarized in a holistic manner alone. For example, when sub-
mitting a pull request, the length of the pull request description, the number of source code
changes, developer experience, project reviewer activity, and project workload are the five
most important factors. However, when we consider the snapshot of when the pull request is
closed, we find that all the factors are less important in explaining the pull request’s latency
than those generated during the review process. Similarly, for pull requests with comment
information, the latency of the first comment and the number of comments are most impor-
tant. Pull requests that use CI tools depend on the CI builds latency and the build results. If
the person who finally integrates the pull request is not the same as the submitter, it depends

10https://github.com/ajaxorg/ace/pull/865
https://github.com/palantir/atlasdb/pull/900
2https://github.com/ansible/ansible/pull/38773
Bhttps://github.com/openshift/openshift-tools/pull/2937

@ Springer

https://github-com-s.libyc.nudt.edu.cn:443/ajaxorg/ace/pull/865
https://github-com-s.libyc.nudt.edu.cn:443/palantir/atlasdb/pull/900
https://github-com-s.libyc.nudt.edu.cn:443/ansible/ansible/pull/38773
https://github-com-s.libyc.nudt.edu.cn:443/openshift/openshift-tools/pull/2937

126 Page 26 of 38 Empir Software Eng (2022) 27: 126

on comment information. This phenomenon indicates that in the future, when conducting
research related to pull request latency or building prediction tools, we should consider the
characteristics of pull requests in-depth and build different models.

RQ2 Do the factors influencing pull request latency change with a change in context?
Yes. The effect of factors on pull request latency is subject to change with context, and we
consider the impact of the same set of factors in different contexts. The project’s maturity
is found to have a better explanatory role with pull request latency as it evolves. When the
project team size increases, the code comments during the process become more impor-
tant. Whether the pull request contains discussion information is correlated with whether
its integrator and contributor are the same. If one ends up making decisions about own pull
requests, this decision depends on the comments during the review process, which in turn
affects the review latency. For the whole pull request review process, the closer a factor is to
the final state, the better the effect of factors on the interpretation of the pull request, and the
change of factors in the process has a significant impact on the latency of the pull request.
These results illustrate that the importance of factors on the interpretation of pull request is
changed with the change of pull request state in the lifetime of the pull request.

6.2 Implication

Compared to previous work, this paper discusses the impact of factors on pull request
latency at both the submission and close time. While considering all factors at different
states, we find that the factors generated during the process have a more significant impact.
For example, when submitting a pull request, the relatively important factors, such as the
number of lines of modified source code, the contributor’s experience, the integrator’s
idle status, and the project’s workload, become less important after considering in-process
factors, such as the existence of comments and the number of code comments.

When considering the relatively important factors for all pull requests, Kononenko et al.
(2018) did not consider the relative importance of code comments after combining vari-
ous factors. Our results find that this factor is relatively essential, ranking the 4th. Yu et al.
(2016) discussed the effect of the number of comments on results and found that it is less
important than the number of added code lines and the latency of CI builds. However,
we introduced whether there exist comments (no related work considered this factor). We
found that its relative importance is even more significant than the code change size and the
latency of CI builds. In the future, when building predictive tools, the existence of comments
can be an excellent alternative to the number of comments as a predictor of pull request
latency. Similarly, for factor same_user (not discussed in related work), we find that other-
integrated pull requests take longer than the self-integrated. McIntosh et al. (2014) found
that self-approved contributions are bug-prone, while contributors prefer self-rejection over
self-acceptance (Zhang et al. 2021). In combination with the short review time of self-
integrated pull requests, we argue that future pull requests that are self-approved and take a
short time need special attention from other developers in the community.

When considering the impact of factors among different contexts, we find that the num-
ber of changed commits during the review process significantly impacts latency. In contrast,
changes in the number of lines of code during the review process do not have a strong cor-
relation. Kononenko et al. (2018) only analyzed the correlation between the changed lines
of code at one snapshot of pull request lifetime and its latency. However, they did not con-
sider the impact of in-process changes. Our conclusions suggest that the amount of code
changed during the process is not a key factor affecting the latency of pull requests. Instead,

@ Springer

Empir Software Eng (2022) 27: 126 Page 27 of 38 126

the number of commits submitted during the review process is essential. So how to reduce
the number of revisions is critical in accelerating the pull request review process.

Since bot plays a vital role in the pull-based development model (Wessel et al. 2018),
we add a case study of bot comments, which were not considered in previous studies. It
is found that both human and bot comments increase pull request latency. However, the
number of human comments is more important for explaining pull request latency than the
number of bot comments. Since bot checks are relatively homogeneous, we think that the
content of the first review has a significant impact on the review process. Future research
or construction of prediction tools need to specifically examine the first review comment of
bots and increase the weight of prediction.

This paper can generate the following actionable suggestions.

1. For research

— When conducting research related to pull request latency, our results can help
researchers select control factors under different contexts in the pull request life-
cycle and then conduct empirical studies for new factors. The recommendations of
specific factors are shown in Table 8.

— Since bot and human comments have different effects on the latency of pull
requests, subsequent researchers can discuss the differences in the effects of the
type of bots on the latency of pull requests.

2. For practice

— Future developers need to consider different factors in different contexts when
building predictive tools for pull request latency. For example, when a pull request
is just submitted, the focus should be on the length of the pull request descrip-
tion. While during the review process, the focus should be on whether there exist
comments, the delay of first response, etc. When pull requests using CI tools, the
latency of CI tools needs to be considered.

— For pull requests reviewed by the same person, if the review time is much lower
than the average time and no one else is involved in the review process of a self-
approved pull request, project managers can be alerted to the quality of the merged
code by adding a self-approved tag (Tables 9, 10 and 11).

7 Threats to Validity

This work is based on our previous dataset (Zhang et al. 2020a). The construction of
the dataset relies on the measurement methods of related work and the GitHub API and
GHTorrent dataset. Therefore, this paper inherits all the threats of the previous work.

At the same time, the paper also has the following limitations:

1. Different algorithms have different ways of evaluating the importance of factors. Here
we use the mixed-effect linear regression model. The reason is that while explaining
the relative importance of factors, we can determine their linear influence.

2. When preprocessing the dataset, we deleted factor bug_fix, which had many missing
values. Thus this paper lacks a discussion about this factor.

3. Although we have discussed the six kinds of contexts, there are many more contexts,
and we have not divided the contexts according to each factor. And because the dataset

@ Springer

Empir Software Eng (2022) 27: 126

126 Page 28 of 38

Kouayey 3sonbar [[nd 103 s[opour uoTssaIFaI TeaUI] SUIP[ING USYM SIOJOEJ [ONUOD PIPUIUIIOIT) SHIBW A

SN N S S

SO S S S S

SO S S S

SO S S

>

SO S S

S S

SO N S S

SN S S S

a
a

SSOSN NS NS SNS

possed-1sar1o
Kouaje[10
SJUQWUIOS ™ WNU
owr)-osuodsar)siy
JOI[JUOD™JUSUWIOD
jouJo-uadoar
Jerysey
SIUSUWIWOO~9POd~WINU
Iosn-oures
SJUSWITOO™SEY
SHWWOS ™ WNU
payonoy”

SO[IJUO™ SO
wInyo-1sa)

SISTX 1O

IoquIaUI 9109
wnu-1d-uado
Kypiqe[reae-1oyeisojur
sbarpnd-aaxd
wnyo-oIs
y3uaruondrrosap

IDou

1D @sn

juauIuod ou

JUSUILIOD SEBY

pajeIdajuI-Jos

pajeISAIUI-IaYI0

9SO[O-[[BISAO

UOISSTWIQNS-[[EISA0

S1X3JU0D JURISFJIP J0J SI0JOR) [OIUOD PIPUSUIWOIAI Y], 8 d|qel

pringer

A's

Page 29 of 38 126

Empir Software Eng (2022) 27: 126

ooy 1od-sour|)s9)

o0y 1od-saseo7159)

v v 9ZIS~Weo)
20[8

v QeI oons-1a)sanbax
v v 93e)00l0xd
SQLIIUOY [eUI) X9~ 01ad

v v wnu-1d-uado
v v Anpiqerreae-1oyedojur

S0y 1ad-siasse

SI1S11210DIDY) 10204
v v)SUanST[eI0s
UOTJBI[Ijje-oures
wnu- marAdr-Iotd
v sbarpnd-aaxd
uonelje-aut
v v SIOMOT[0]
v v Qwn-asuodsarisiy
v 1d-ysay
v v \ AV/ \V4 v IoqUIDUI"9I0D
\V4 I19pud3-qruod
v uonelIje-qLIuod

$o1s112100.10Y) 42d0jaaaq

810¢ 810C 610C L10T 910C 810C SI0C 0T0T L10T ¥10C 810C TI0T 610T 810C 910C 910C ¥10¢
Te e 'R B [RR TR el el IOATED) PUB IOAIRD PUB ‘[B10 ‘[0 ‘[B)R 'R [l el ‘e 10
NH DISMOPES Zenw] OeYZ UOIIH Opleuldg nx [YoPH 0] nsog ojurd [eseg Suerr ojuououoy [eseg nx SOISNOD)

SO[OTIE PIJB[aI UI SUOISIOAP Isanbar [[nd 0) pajefar s10)oe] 6 3|qeL

pringer

A's

Empir Software Eng (2022) 27: 126

126 Page 30 of 38

v v SO~ wnu
U00™SJU